asahi417's picture
model update
cef4eac
|
raw
history blame
6.73 kB
---
datasets:
- tner/tweetner7
metrics:
- f1
- precision
- recall
model-index:
- name: tner/roberta-base-tweetner7-all
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: tner/tweetner7
type: tner/tweetner7
args: tner/tweetner7
metrics:
- name: F1 (test_2021)
type: f1
value: 0.6515831894070236
- name: Precision (test_2021)
type: precision
value: 0.6488190781930749
- name: Recall (test_2021)
type: recall
value: 0.6543709528214616
- name: Macro F1 (test_2021)
type: f1_macro
value: 0.6081318073591985
- name: Macro Precision (test_2021)
type: precision_macro
value: 0.6024892144112918
- name: Macro Recall (test_2021)
type: recall_macro
value: 0.6155807376978756
- name: Entity Span F1 (test_2021)
type: f1_entity_span
value: 0.7893373251194657
- name: Entity Span Precision (test_2020)
type: precision_entity_span
value: 0.7859435909195138
- name: Entity Span Recall (test_2021)
type: recall_entity_span
value: 0.7927604949693535
- name: F1 (test_2020)
type: f1
value: 0.6531839300355288
- name: Precision (test_2020)
type: precision
value: 0.6899538106235565
- name: Recall (test_2020)
type: recall
value: 0.6201349247535028
- name: Macro F1 (test_2020)
type: f1_macro
value: 0.6166186507300974
- name: Macro Precision (test_2020)
type: precision_macro
value: 0.6523781324413148
- name: Macro Recall (test_2020)
type: recall_macro
value: 0.5860926262979317
- name: Entity Span F1 (test_2020)
type: f1_entity_span
value: 0.7523236741388737
- name: Entity Span Precision (test_2020)
type: precision_entity_span
value: 0.7949162333911034
- name: Entity Span Recall (test_2020)
type: recall_entity_span
value: 0.7140633108458744
pipeline_tag: token-classification
widget:
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
example_title: "NER Example 1"
---
# tner/roberta-base-tweetner7-all
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_all` split).
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
for more detail). It achieves the following results on the test set of 2021:
- F1 (micro): 0.6515831894070236
- Precision (micro): 0.6488190781930749
- Recall (micro): 0.6543709528214616
- F1 (macro): 0.6081318073591985
- Precision (macro): 0.6024892144112918
- Recall (macro): 0.6155807376978756
The per-entity breakdown of the F1 score on the test set are below:
- corporation: 0.5174234424498415
- creative_work: 0.466403162055336
- event: 0.46727272727272723
- group: 0.6071197411003236
- location: 0.6832786885245901
- person: 0.8377301195672804
- product: 0.6776947705442904
For F1 scores, the confidence interval is obtained by bootstrap as below:
- F1 (micro):
- 90%: [0.6426248846161623, 0.6611146727643068]
- 95%: [0.6408583849998567, 0.6629609445072536]
- F1 (macro):
- 90%: [0.6426248846161623, 0.6611146727643068]
- 95%: [0.6408583849998567, 0.6629609445072536]
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-base-tweetner7-all/raw/main/eval/metric.json)
and [metric file of entity span](https://huggingface.co/tner/roberta-base-tweetner7-all/raw/main/eval/metric_span.json).
### Usage
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
```shell
pip install tner
```
and activate model as below.
```python
from tner import TransformersNER
model = TransformersNER("tner/roberta-base-tweetner7-all")
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
```
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
### Training hyperparameters
The following hyperparameters were used during training:
- dataset: ['tner/tweetner7']
- dataset_split: train_all
- dataset_name: None
- local_dataset: None
- model: roberta-base
- crf: True
- max_length: 128
- epoch: 30
- batch_size: 32
- lr: 1e-05
- random_seed: 0
- gradient_accumulation_steps: 1
- weight_decay: 1e-07
- lr_warmup_step_ratio: 0.3
- max_grad_norm: 1
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-base-tweetner7-all/raw/main/trainer_config.json).
### Reference
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-camacho-collados-2021-ner,
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
author = "Ushio, Asahi and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-demos.7",
doi = "10.18653/v1/2021.eacl-demos.7",
pages = "53--62",
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
}
```