SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 75 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-tsdae-askubuntu")
# Run inference
sentences = [
'how to fix ssl error from python apps ( urllib ) when behind https proxy ?',
'how to ssl from python () proxy',
'upstart',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Reranking
- Datasets:
AskUbuntu-dev
andAskUbuntu-test
- Evaluated with
RerankingEvaluator
Metric | AskUbuntu-dev | AskUbuntu-test |
---|---|---|
map | 0.5058 | 0.5826 |
mrr@10 | 0.6326 | 0.7237 |
ndcg@10 | 0.5529 | 0.6304 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 160,436 training samples
- Columns:
text
andnoisy
- Approximate statistics based on the first 1000 samples:
text noisy type string string details - min: 5 tokens
- mean: 14.43 tokens
- max: 39 tokens
- min: 3 tokens
- mean: 9.47 tokens
- max: 24 tokens
- Samples:
text noisy how to get the `` your battery is broken '' message to go away ?
to get the is broken go away?
how can i set the software center to install software for non-root users ?
how can i the center install non-root users
what are some alternatives to upgrading without using the standard upgrade system ?
what are alternatives to using standard system?
- Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 3e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | AskUbuntu-dev_map | AskUbuntu-test_map |
---|---|---|---|---|
-1 | -1 | - | 0.4151 | - |
0.0499 | 1000 | 6.1757 | - | - |
0.0997 | 2000 | 4.0925 | - | - |
0.1496 | 3000 | 3.2921 | - | - |
0.1995 | 4000 | 2.9046 | - | - |
0.2493 | 5000 | 2.669 | 0.5158 | - |
0.2992 | 6000 | 2.5884 | - | - |
0.3490 | 7000 | 2.437 | - | - |
0.3989 | 8000 | 2.3406 | - | - |
0.4488 | 9000 | 2.2709 | - | - |
0.4986 | 10000 | 2.1881 | 0.5131 | - |
0.5485 | 11000 | 2.1627 | - | - |
0.5984 | 12000 | 2.1055 | - | - |
0.6482 | 13000 | 2.0577 | - | - |
0.6981 | 14000 | 2.0133 | - | - |
0.7479 | 15000 | 1.9877 | 0.5130 | - |
0.7978 | 16000 | 1.9569 | - | - |
0.8477 | 17000 | 1.9219 | - | - |
0.8975 | 18000 | 1.9124 | - | - |
0.9474 | 19000 | 1.8676 | - | - |
0.9973 | 20000 | 1.8461 | 0.5058 | - |
-1 | -1 | - | - | 0.5826 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.190 kWh
- Carbon Emitted: 0.074 kg of CO2
- Hours Used: 0.64 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.4.0.dev0
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.0+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 2.20.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tomaarsen/bert-base-uncased-tsdae-askubuntu
Base model
google-bert/bert-base-uncasedEvaluation results
- Map on AskUbuntu devself-reported0.506
- Mrr@10 on AskUbuntu devself-reported0.633
- Ndcg@10 on AskUbuntu devself-reported0.553
- Map on AskUbuntu testself-reported0.583
- Mrr@10 on AskUbuntu testself-reported0.724
- Ndcg@10 on AskUbuntu testself-reported0.630