SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-matryoshka-v3")
sentences = [
'A man shoots a man.',
'A man is shooting off guns.',
'A man is erasing a chalk board.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8481 |
spearman_cosine |
0.8519 |
pearson_manhattan |
0.8393 |
spearman_manhattan |
0.8385 |
pearson_euclidean |
0.841 |
spearman_euclidean |
0.8402 |
pearson_dot |
0.7784 |
spearman_dot |
0.778 |
pearson_max |
0.8481 |
spearman_max |
0.8519 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8481 |
spearman_cosine |
0.8524 |
pearson_manhattan |
0.8386 |
spearman_manhattan |
0.8377 |
pearson_euclidean |
0.8402 |
spearman_euclidean |
0.8395 |
pearson_dot |
0.7712 |
spearman_dot |
0.7713 |
pearson_max |
0.8481 |
spearman_max |
0.8524 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8421 |
spearman_cosine |
0.8488 |
pearson_manhattan |
0.8313 |
spearman_manhattan |
0.8316 |
pearson_euclidean |
0.8333 |
spearman_euclidean |
0.8335 |
pearson_dot |
0.7446 |
spearman_dot |
0.745 |
pearson_max |
0.8421 |
spearman_max |
0.8488 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8347 |
spearman_cosine |
0.8445 |
pearson_manhattan |
0.8241 |
spearman_manhattan |
0.8248 |
pearson_euclidean |
0.8254 |
spearman_euclidean |
0.8262 |
pearson_dot |
0.7084 |
spearman_dot |
0.7093 |
pearson_max |
0.8347 |
spearman_max |
0.8445 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8201 |
spearman_cosine |
0.8352 |
pearson_manhattan |
0.8032 |
spearman_manhattan |
0.8047 |
pearson_euclidean |
0.806 |
spearman_euclidean |
0.8072 |
pearson_dot |
0.636 |
spearman_dot |
0.6389 |
pearson_max |
0.8201 |
spearman_max |
0.8352 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8262 |
spearman_cosine |
0.8298 |
pearson_manhattan |
0.8104 |
spearman_manhattan |
0.8033 |
pearson_euclidean |
0.8114 |
spearman_euclidean |
0.8048 |
pearson_dot |
0.7351 |
spearman_dot |
0.7223 |
pearson_max |
0.8262 |
spearman_max |
0.8298 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8265 |
spearman_cosine |
0.8303 |
pearson_manhattan |
0.8092 |
spearman_manhattan |
0.8022 |
pearson_euclidean |
0.81 |
spearman_euclidean |
0.8034 |
pearson_dot |
0.7239 |
spearman_dot |
0.7141 |
pearson_max |
0.8265 |
spearman_max |
0.8303 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8248 |
spearman_cosine |
0.8305 |
pearson_manhattan |
0.8012 |
spearman_manhattan |
0.7951 |
pearson_euclidean |
0.8028 |
spearman_euclidean |
0.7974 |
pearson_dot |
0.7011 |
spearman_dot |
0.6946 |
pearson_max |
0.8248 |
spearman_max |
0.8305 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8206 |
spearman_cosine |
0.8284 |
pearson_manhattan |
0.7932 |
spearman_manhattan |
0.7878 |
pearson_euclidean |
0.7947 |
spearman_euclidean |
0.7891 |
pearson_dot |
0.6618 |
spearman_dot |
0.6586 |
pearson_max |
0.8206 |
spearman_max |
0.8284 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8119 |
spearman_cosine |
0.8241 |
pearson_manhattan |
0.7761 |
spearman_manhattan |
0.7738 |
pearson_euclidean |
0.7777 |
spearman_euclidean |
0.7746 |
pearson_dot |
0.5934 |
spearman_dot |
0.5884 |
pearson_max |
0.8119 |
spearman_max |
0.8241 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at 65dd388
- Size: 557,850 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
|
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
|
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
|
- Samples:
anchor |
positive |
negative |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
The boy skates down the sidewalk. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 5 tokens
- mean: 15.0 tokens
- max: 44 tokens
|
- min: 6 tokens
- mean: 14.99 tokens
- max: 61 tokens
|
- min: 0.0
- mean: 0.47
- max: 1.0
|
- Samples:
sentence1 |
sentence2 |
score |
A man with a hard hat is dancing. |
A man wearing a hard hat is dancing. |
1.0 |
A young child is riding a horse. |
A child is riding a horse. |
0.95 |
A man is feeding a mouse to a snake. |
The man is feeding a mouse to the snake. |
1.0 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
num_train_epochs
: 1
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: False
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: None
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
sts-dev-128_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-dev-768_spearman_cosine |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
0.0229 |
100 |
19.9245 |
11.3900 |
0.7772 |
0.7998 |
0.8049 |
0.7902 |
0.7919 |
- |
- |
- |
- |
- |
0.0459 |
200 |
10.6055 |
11.1510 |
0.7809 |
0.7996 |
0.8055 |
0.7954 |
0.7954 |
- |
- |
- |
- |
- |
0.0688 |
300 |
9.6389 |
11.1229 |
0.7836 |
0.8029 |
0.8114 |
0.7923 |
0.8083 |
- |
- |
- |
- |
- |
0.0918 |
400 |
8.6917 |
11.0299 |
0.7976 |
0.8117 |
0.8142 |
0.8002 |
0.8087 |
- |
- |
- |
- |
- |
0.1147 |
500 |
8.3064 |
11.3586 |
0.7895 |
0.8058 |
0.8120 |
0.7978 |
0.8065 |
- |
- |
- |
- |
- |
0.1376 |
600 |
7.8026 |
11.5047 |
0.7876 |
0.8015 |
0.8065 |
0.7934 |
0.8016 |
- |
- |
- |
- |
- |
0.1606 |
700 |
7.9978 |
11.5823 |
0.7944 |
0.8067 |
0.8072 |
0.7994 |
0.8045 |
- |
- |
- |
- |
- |
0.1835 |
800 |
6.9249 |
11.5862 |
0.7945 |
0.8054 |
0.8085 |
0.8012 |
0.8033 |
- |
- |
- |
- |
- |
0.2065 |
900 |
7.1059 |
11.2365 |
0.7895 |
0.8035 |
0.8072 |
0.7956 |
0.8031 |
- |
- |
- |
- |
- |
0.2294 |
1000 |
6.5483 |
11.3770 |
0.7853 |
0.7994 |
0.8039 |
0.7894 |
0.8024 |
- |
- |
- |
- |
- |
0.2524 |
1100 |
6.6684 |
11.5038 |
0.7968 |
0.8087 |
0.8115 |
0.8002 |
0.8065 |
- |
- |
- |
- |
- |
0.2753 |
1200 |
6.4661 |
11.4057 |
0.7980 |
0.8082 |
0.8103 |
0.8057 |
0.8070 |
- |
- |
- |
- |
- |
0.2982 |
1300 |
6.501 |
11.2521 |
0.7974 |
0.8100 |
0.8111 |
0.8025 |
0.8079 |
- |
- |
- |
- |
- |
0.3212 |
1400 |
6.0769 |
11.1458 |
0.7971 |
0.8103 |
0.8124 |
0.7982 |
0.8082 |
- |
- |
- |
- |
- |
0.3441 |
1500 |
6.1919 |
11.3180 |
0.8039 |
0.8129 |
0.8144 |
0.8094 |
0.8098 |
- |
- |
- |
- |
- |
0.3671 |
1600 |
5.8213 |
11.6196 |
0.7924 |
0.8072 |
0.8090 |
0.8003 |
0.8012 |
- |
- |
- |
- |
- |
0.3900 |
1700 |
5.534 |
11.0700 |
0.7979 |
0.8104 |
0.8132 |
0.8028 |
0.8101 |
- |
- |
- |
- |
- |
0.4129 |
1800 |
5.7536 |
11.0916 |
0.7934 |
0.8087 |
0.8149 |
0.8008 |
0.8085 |
- |
- |
- |
- |
- |
0.4359 |
1900 |
5.3778 |
11.2658 |
0.7942 |
0.8084 |
0.8104 |
0.7980 |
0.8049 |
- |
- |
- |
- |
- |
0.4588 |
2000 |
5.4925 |
11.4851 |
0.7932 |
0.8062 |
0.8086 |
0.7932 |
0.8057 |
- |
- |
- |
- |
- |
0.4818 |
2100 |
5.3125 |
11.4833 |
0.7987 |
0.8119 |
0.8154 |
0.8012 |
0.8124 |
- |
- |
- |
- |
- |
0.5047 |
2200 |
5.1914 |
11.2848 |
0.7784 |
0.7971 |
0.8037 |
0.7911 |
0.8004 |
- |
- |
- |
- |
- |
0.5276 |
2300 |
5.2921 |
11.5364 |
0.7698 |
0.7910 |
0.7974 |
0.7839 |
0.7900 |
- |
- |
- |
- |
- |
0.5506 |
2400 |
5.288 |
11.3944 |
0.7873 |
0.8011 |
0.8051 |
0.7877 |
0.8003 |
- |
- |
- |
- |
- |
0.5735 |
2500 |
5.3697 |
11.4532 |
0.7949 |
0.8077 |
0.8111 |
0.7955 |
0.8069 |
- |
- |
- |
- |
- |
0.5965 |
2600 |
5.1521 |
11.2788 |
0.7973 |
0.8095 |
0.8130 |
0.7940 |
0.8088 |
- |
- |
- |
- |
- |
0.6194 |
2700 |
5.2316 |
11.2472 |
0.7948 |
0.8077 |
0.8102 |
0.7939 |
0.8053 |
- |
- |
- |
- |
- |
0.6423 |
2800 |
5.2599 |
11.4171 |
0.7882 |
0.8029 |
0.8065 |
0.7888 |
0.8019 |
- |
- |
- |
- |
- |
0.6653 |
2900 |
5.4052 |
11.4026 |
0.7871 |
0.8005 |
0.8021 |
0.7833 |
0.7985 |
- |
- |
- |
- |
- |
0.6882 |
3000 |
5.3474 |
11.2084 |
0.7895 |
0.8047 |
0.8079 |
0.7928 |
0.8050 |
- |
- |
- |
- |
- |
0.7112 |
3100 |
5.0336 |
11.3999 |
0.8023 |
0.8150 |
0.8182 |
0.8024 |
0.8168 |
- |
- |
- |
- |
- |
0.7341 |
3200 |
5.2496 |
11.2307 |
0.8015 |
0.8137 |
0.8167 |
0.8000 |
0.8140 |
- |
- |
- |
- |
- |
0.7571 |
3300 |
3.8712 |
10.9468 |
0.8396 |
0.8440 |
0.8471 |
0.8284 |
0.8479 |
- |
- |
- |
- |
- |
0.7800 |
3400 |
2.7068 |
10.9292 |
0.8414 |
0.8453 |
0.8489 |
0.8305 |
0.8497 |
- |
- |
- |
- |
- |
0.8029 |
3500 |
2.3418 |
10.8626 |
0.8427 |
0.8467 |
0.8504 |
0.8322 |
0.8504 |
- |
- |
- |
- |
- |
0.8259 |
3600 |
2.2419 |
10.9065 |
0.8421 |
0.8467 |
0.8504 |
0.8320 |
0.8502 |
- |
- |
- |
- |
- |
0.8488 |
3700 |
2.125 |
10.9517 |
0.8424 |
0.8472 |
0.8509 |
0.8324 |
0.8510 |
- |
- |
- |
- |
- |
0.8718 |
3800 |
1.9942 |
11.0142 |
0.8438 |
0.8482 |
0.8519 |
0.8337 |
0.8517 |
- |
- |
- |
- |
- |
0.8947 |
3900 |
2.031 |
10.9662 |
0.8433 |
0.8480 |
0.8519 |
0.8340 |
0.8515 |
- |
- |
- |
- |
- |
0.9176 |
4000 |
1.9734 |
11.0054 |
0.8452 |
0.8495 |
0.8531 |
0.8354 |
0.8528 |
- |
- |
- |
- |
- |
0.9406 |
4100 |
1.9468 |
11.0183 |
0.8447 |
0.8490 |
0.8526 |
0.8348 |
0.8522 |
- |
- |
- |
- |
- |
0.9635 |
4200 |
1.9008 |
11.0154 |
0.8445 |
0.8485 |
0.8521 |
0.8352 |
0.8517 |
- |
- |
- |
- |
- |
0.9865 |
4300 |
1.8511 |
10.9966 |
0.8445 |
0.8488 |
0.8524 |
0.8352 |
0.8519 |
- |
- |
- |
- |
- |
1.0 |
4359 |
- |
- |
- |
- |
- |
- |
- |
0.8284 |
0.8305 |
0.8303 |
0.8241 |
0.8298 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.346 kWh
- Carbon Emitted: 0.134 kg of CO2
- Hours Used: 1.296 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}