tomaarsen's picture
tomaarsen HF staff
Upload model
111bd4a
|
raw
history blame
2.09 kB
metadata
library_name: span-marker
tags:
  - span-marker
  - token-classification
  - ner
  - named-entity-recognition
  - generated_from_span_marker_trainer
metrics:
  - precision
  - recall
  - f1
widget: []
pipeline_tag: token-classification

SpanMarker

This is a SpanMarker model that can be used for Named Entity Recognition.

Model Details

Model Description

  • Model Type: SpanMarker
  • Maximum Sequence Length: 256 tokens
  • Maximum Entity Length: 8 words

Model Sources

Uses

Direct Use

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")

Training Details

Framework Versions

  • Python: 3.9.16
  • SpanMarker: 1.3.1.dev
  • Transformers : 4.29.2
  • PyTorch: 2.0.1+cu118
  • Datasets: 2.14.3
  • Tokenizers: 0.13.2