|
--- |
|
language: en |
|
license: other |
|
library_name: span-marker |
|
tags: |
|
- span-marker |
|
- token-classification |
|
- ner |
|
- named-entity-recognition |
|
- generated_from_span_marker_trainer |
|
datasets: |
|
- tner/bionlp2004 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
widget: |
|
- text: Coexpression of HMG I/Y and Oct-2 in cell lines lacking Oct-2 results in high |
|
levels of HLA-DRA gene expression, and in vitro DNA-binding studies reveal that |
|
HMG I/Y stimulates Oct-2A binding to the HLA-DRA promoter. |
|
- text: In erythroid cells most of the transcription activity was contained in a 150 |
|
bp promoter fragment with binding sites for transcription factors AP2, Sp1 and |
|
the erythroid-specific GATA-1. |
|
- text: 'Synergy between signal transduction pathways is obligatory for expression |
|
of c-fos in B and T cell lines: implication for c-fos control via surface immunoglobulin |
|
and T cell antigen receptors.' |
|
- text: CIITA mRNA is normally inducible by IFN-gamma in class II non-inducible, |
|
RB-defective lines, and in one line, re-expression of RB has no effect on CIITA |
|
mRNA induction levels. |
|
- text: As we reported previously, MNDA mRNA level in adherent monocytes is elevated |
|
by IFN-alpha; in this study, we further assessed MNDA expression in in vitro |
|
monocyte-derived macrophages. |
|
pipeline_tag: token-classification |
|
co2_eq_emissions: |
|
emissions: 45.104 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: false |
|
gpu_model: 1 x NVIDIA GeForce RTX 3090 |
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K |
|
ram_total_size: 31.777088165283203 |
|
hours_used: 0.296 |
|
model-index: |
|
- name: SpanMarker with bert-base-uncased on BioNLP2004 |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Named Entity Recognition |
|
dataset: |
|
name: BioNLP2004 |
|
type: tner/bionlp2004 |
|
split: test |
|
metrics: |
|
- type: f1 |
|
value: 0.7620637836032726 |
|
name: F1 |
|
- type: precision |
|
value: 0.7289958470876371 |
|
name: Precision |
|
- type: recall |
|
value: 0.7982742537313433 |
|
name: Recall |
|
--- |
|
|
|
# SpanMarker with bert-base-uncased on BioNLP2004 |
|
|
|
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [BioNLP2004](https://huggingface.co/datasets/tner/bionlp2004) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-uncased](https://huggingface.co/bert-base-uncased) as the underlying encoder. See [train.py](train.py) for the training script. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Model Type:** SpanMarker |
|
- **Encoder:** [bert-base-uncased](https://huggingface.co/bert-base-uncased) |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Maximum Entity Length:** 8 words |
|
- **Training Dataset:** [BioNLP2004](https://huggingface.co/datasets/tner/bionlp2004) |
|
- **Language:** en |
|
- **License:** other |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) |
|
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:----------|:-------------------------------------------------------------------------------------------------| |
|
| DNA | "immunoglobulin heavy-chain enhancer", "enhancer", "immunoglobulin heavy-chain ( IgH ) enhancer" | |
|
| RNA | "GATA-1 mRNA", "c-myb mRNA", "antisense myb RNA" | |
|
| cell_line | "monocytic U937 cells", "TNF-treated HUVECs", "HUVECs" | |
|
| cell_type | "B cells", "non-B cells", "human red blood cells" | |
|
| protein | "ICAM-1", "VCAM-1", "NADPH oxidase" | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Precision | Recall | F1 | |
|
|:----------|:----------|:-------|:-------| |
|
| **all** | 0.7290 | 0.7983 | 0.7621 | |
|
| DNA | 0.7174 | 0.7505 | 0.7336 | |
|
| RNA | 0.6977 | 0.7692 | 0.7317 | |
|
| cell_line | 0.5831 | 0.7020 | 0.6370 | |
|
| cell_type | 0.8222 | 0.7381 | 0.7779 | |
|
| protein | 0.7196 | 0.8407 | 0.7755 | |
|
|
|
## Uses |
|
|
|
### Direct Use |
|
|
|
```python |
|
from span_marker import SpanMarkerModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-bionlp") |
|
# Run inference |
|
entities = model.predict("In erythroid cells most of the transcription activity was contained in a 150 bp promoter fragment with binding sites for transcription factors AP2, Sp1 and the erythroid-specific GATA-1.") |
|
``` |
|
|
|
### Downstream Use |
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
```python |
|
from span_marker import SpanMarkerModel, Trainer |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-bionlp") |
|
|
|
# Specify a Dataset with "tokens" and "ner_tag" columns |
|
dataset = load_dataset("conll2003") # For example CoNLL2003 |
|
|
|
# Initialize a Trainer using the pretrained model & dataset |
|
trainer = Trainer( |
|
model=model, |
|
train_dataset=dataset["train"], |
|
eval_dataset=dataset["validation"], |
|
) |
|
trainer.train() |
|
trainer.save_model("tomaarsen/span-marker-bert-base-uncased-bionlp-finetuned") |
|
``` |
|
</details> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:----------------------|:----|:--------|:----| |
|
| Sentence length | 2 | 26.5790 | 166 | |
|
| Entities per sentence | 0 | 2.7528 | 23 | |
|
|
|
### Training Hyperparameters |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training Results |
|
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |
|
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| |
|
| 0.4505 | 300 | 0.0210 | 0.7497 | 0.7659 | 0.7577 | 0.9254 | |
|
| 0.9009 | 600 | 0.0162 | 0.8048 | 0.8217 | 0.8131 | 0.9432 | |
|
| 1.3514 | 900 | 0.0154 | 0.8126 | 0.8249 | 0.8187 | 0.9434 | |
|
| 1.8018 | 1200 | 0.0149 | 0.8148 | 0.8451 | 0.8296 | 0.9481 | |
|
| 2.2523 | 1500 | 0.0150 | 0.8297 | 0.8438 | 0.8367 | 0.9501 | |
|
| 2.7027 | 1800 | 0.0145 | 0.8280 | 0.8443 | 0.8361 | 0.9501 | |
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Carbon Emitted**: 0.045 kg of CO2 |
|
- **Hours Used**: 0.296 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: No |
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090 |
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K |
|
- **RAM Size**: 31.78 GB |
|
|
|
### Framework Versions |
|
|
|
- Python: 3.9.16 |
|
- SpanMarker: 1.3.1.dev |
|
- Transformers : 4.29.2 |
|
- PyTorch: 2.0.1+cu118 |
|
- Datasets: 2.14.3 |
|
- Tokenizers: 0.13.2 |