File size: 2,196 Bytes
d6e0638
5ed7dee
 
d6e0638
ffd8a89
d6e0638
5ed7dee
 
 
 
 
 
 
 
 
 
d6e0638
b7999fa
5ed7dee
 
 
 
 
 
 
cba2bec
5ed7dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e0638
 
 
 
20d4d03
d6e0638
144fdd6
 
 
d6e0638
 
 
 
 
 
 
 
ffd8a89
d6e0638
 
 
 
ffd8a89
cba2bec
d6e0638
f8d08ee
d6e0638
 
ffd8a89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
language:
- en
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
datasets:
- DFKI-SLT/few-nerd
metrics:
- f1
- recall
- precision
pipeline_tag: token-classification
widget:
- text: Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic
    to Paris.
  example_title: Amelia Earhart
- text: Leonardo di ser Piero da Vinci painted the Mona Lisa based on Italian noblewoman
    Lisa del Giocondo.
  example_title: Leonardo da Vinci
base_model: prajjwal1/bert-tiny
model-index:
- name: SpanMarker w. bert-base-cased on coarsegrained, supervised FewNERD by Tom
    Aarsen
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: coarsegrained, supervised FewNERD
      type: DFKI-SLT/few-nerd
      config: supervised
      split: test
      revision: 2e3e727c63604fbfa2ff4cc5055359c84fe5ef2c
    metrics:
    - type: f1
      value: 0.7081
      name: F1
    - type: precision
      value: 0.7378
      name: Precision
    - type: recall
      value: 0.6808
      name: Recall
---

# SpanMarker for Named Entity Recognition

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) as the underlying encoder. 

## Note
This model is primarily used for efficient tests on the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) GitHub repository.

## Usage

To use this model for inference, first install the `span_marker` library:

```bash
pip install span_marker
```

You can then run inference with this model like so:

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-tiny-fewnerd-coarse-super")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
```

See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.