metadata
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
pipeline_tag: token-classification
widget:
- text: >-
Amelia Earthart voló su Lockheed Vega 5B monomotor a través del Océano
Atlántico hasta París .
example_title: Spanish
- text: >-
Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic
to Paris .
example_title: English
- text: >-
Amelia Earthart a fait voler son monomoteur Lockheed Vega 5B à travers
l'ocean Atlantique jusqu'à Paris .
example_title: French
- text: >-
Amelia Earthart flog mit ihrer einmotorigen Lockheed Vega 5B über den
Atlantik nach Paris .
example_title: German
- text: >-
Амелия Эртхарт перелетела на своем одномоторном самолете Lockheed Vega 5B
через Атлантический океан в Париж .
example_title: Russian
- text: >-
Amelia Earthart vloog met haar één-motorige Lockheed Vega 5B over de
Atlantische Oceaan naar Parijs .
example_title: Dutch
- text: >-
Amelia Earthart przeleciała swoim jednosilnikowym samolotem Lockheed Vega
5B przez Ocean Atlantycki do Paryża .
example_title: Polish
- text: >-
Amelia Earthart flaug eins hreyfils Lockheed Vega 5B yfir Atlantshafið til
Parísar .
example_title: Icelandic
- text: >-
Η Amelia Earthart πέταξε το μονοκινητήριο Lockheed Vega 5B της πέρα από
τον Ατλαντικό Ωκεανό στο Παρίσι .
example_title: Greek
model-index:
- name: SpanMarker w. xlm-roberta-base on MultiNERD by Tom Aarsen
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
type: Babelscape/multinerd
name: MultiNERD
split: test
revision: 2814b78e7af4b5a1f1886fe7ad49632de4d9dd25
metrics:
- type: f1
value: 0.91314
name: F1
- type: precision
value: 0.91994
name: Precision
- type: recall
value: 0.90643
name: Recall
datasets:
- Babelscape/multinerd
language:
- multilingual
metrics:
- f1
- recall
- precision
SpanMarker for Named Entity Recognition
This is a SpanMarker model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses xlm-roberta-base as the underlying encoder. See train.py for the training script.
Metrics
Language | F1 | Precision | Recall |
---|---|---|---|
all | 91.31 | 91.99 | 90.64 |
de | 93.77 | 93.56 | 93.87 |
en | 94.55 | 94.01 | 95.10 |
es | 90.82 | 92.58 | 89.13 |
fr | 90.90 | 93.23 | 88.68 |
it | 93.40 | 90.23 | 92.60 |
nl | 92.47 | 93.61 | 91.36 |
pl | 91.66 | 92.51 | 90.81 |
pt | 91.73 | 93.29 | 90.22 |
ru | 92.64 | 92.37 | 92.91 |
zh | 82.38 | 83.23 | 81.55 |
Usage
To use this model for inference, first install the span_marker
library:
pip install span_marker
You can then run inference with this model like so:
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-base-multinerd")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
See the SpanMarker repository for documentation and additional information on this library.