metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/stsb-distilbert-base
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: How metro works?
sentences:
- How can Turing machine works?
- What are the best C++ books?
- What should I learn first in PHP?
- source_sentence: How fast is fast?
sentences:
- How does light travel so fast?
- How could I become an actor?
- Was Muhammad a pedophile?
- source_sentence: What is a kernel?
sentences:
- What is a tensor?
- What does copyright protect?
- Can we increase height after 23?
- source_sentence: What is a tensor?
sentences:
- What is reliance jio?
- What are the reasons of war?
- Does speed reading really work?
- source_sentence: Is Cicret a scam?
sentences:
- Is the Cicret Bracelet a scam?
- Can you eat only once a day?
- What books should every man read?
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 15.153912802318576
energy_consumed: 0.038985939877640395
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.169
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates
type: quora-duplicates
metrics:
- type: cosine_accuracy
value: 0.816
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7866689562797546
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7285714285714286
name: Cosine F1
- type: cosine_f1_threshold
value: 0.735264778137207
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6746031746031746
name: Cosine Precision
- type: cosine_recall
value: 0.7919254658385093
name: Cosine Recall
- type: cosine_ap
value: 0.7731120768804719
name: Cosine Ap
- type: dot_accuracy
value: 0.807
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 150.97946166992188
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7223796033994335
name: Dot F1
- type: dot_f1_threshold
value: 137.3444366455078
name: Dot F1 Threshold
- type: dot_precision
value: 0.6640625
name: Dot Precision
- type: dot_recall
value: 0.7919254658385093
name: Dot Recall
- type: dot_ap
value: 0.749212069604305
name: Dot Ap
- type: manhattan_accuracy
value: 0.81
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 195.88662719726562
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7246376811594203
name: Manhattan F1
- type: manhattan_f1_threshold
value: 237.68594360351562
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.6292906178489702
name: Manhattan Precision
- type: manhattan_recall
value: 0.8540372670807453
name: Manhattan Recall
- type: manhattan_ap
value: 0.7610544151599187
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.81
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 8.773942947387695
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7260812581913498
name: Euclidean F1
- type: euclidean_f1_threshold
value: 10.843769073486328
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.6281179138321995
name: Euclidean Precision
- type: euclidean_recall
value: 0.860248447204969
name: Euclidean Recall
- type: euclidean_ap
value: 0.7611533877712096
name: Euclidean Ap
- type: max_accuracy
value: 0.816
name: Max Accuracy
- type: max_accuracy_threshold
value: 195.88662719726562
name: Max Accuracy Threshold
- type: max_f1
value: 0.7285714285714286
name: Max F1
- type: max_f1_threshold
value: 237.68594360351562
name: Max F1 Threshold
- type: max_precision
value: 0.6746031746031746
name: Max Precision
- type: max_recall
value: 0.860248447204969
name: Max Recall
- type: max_ap
value: 0.7731120768804719
name: Max Ap
- task:
type: paraphrase-mining
name: Paraphrase Mining
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: average_precision
value: 0.5348666252858723
name: Average Precision
- type: f1
value: 0.5395064090300363
name: F1
- type: precision
value: 0.5174549291251892
name: Precision
- type: recall
value: 0.5635210071439276
name: Recall
- type: threshold
value: 0.762035459280014
name: Threshold
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9646
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9926
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9956
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9986
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9646
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4293333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2754
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14515999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.830104138622815
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9609072390452685
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9808022997296821
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9934541226453286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9795490191788223
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9789640476190478
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.971751123151301
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9574
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9876
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9924
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9978
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9574
name: Dot Precision@1
- type: dot_precision@3
value: 0.4257333333333334
name: Dot Precision@3
- type: dot_precision@5
value: 0.27368000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.14468000000000003
name: Dot Precision@10
- type: dot_recall@1
value: 0.8237692901379665
name: Dot Recall@1
- type: dot_recall@3
value: 0.9538191510221804
name: Dot Recall@3
- type: dot_recall@5
value: 0.9764249670623496
name: Dot Recall@5
- type: dot_recall@10
value: 0.9918117957075603
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9740754474178193
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9731360317460321
name: Dot Mrr@10
- type: dot_map@100
value: 0.9646398037726347
name: Dot Map@100
SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base on the sentence-transformers/quora-duplicates dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-distilbert-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-mnrl")
# Run inference
sentences = [
'Is Cicret a scam?',
'Is the Cicret Bracelet a scam?',
'Can you eat only once a day?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
quora-duplicates
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.816 |
cosine_accuracy_threshold | 0.7867 |
cosine_f1 | 0.7286 |
cosine_f1_threshold | 0.7353 |
cosine_precision | 0.6746 |
cosine_recall | 0.7919 |
cosine_ap | 0.7731 |
dot_accuracy | 0.807 |
dot_accuracy_threshold | 150.9795 |
dot_f1 | 0.7224 |
dot_f1_threshold | 137.3444 |
dot_precision | 0.6641 |
dot_recall | 0.7919 |
dot_ap | 0.7492 |
manhattan_accuracy | 0.81 |
manhattan_accuracy_threshold | 195.8866 |
manhattan_f1 | 0.7246 |
manhattan_f1_threshold | 237.6859 |
manhattan_precision | 0.6293 |
manhattan_recall | 0.854 |
manhattan_ap | 0.7611 |
euclidean_accuracy | 0.81 |
euclidean_accuracy_threshold | 8.7739 |
euclidean_f1 | 0.7261 |
euclidean_f1_threshold | 10.8438 |
euclidean_precision | 0.6281 |
euclidean_recall | 0.8602 |
euclidean_ap | 0.7612 |
max_accuracy | 0.816 |
max_accuracy_threshold | 195.8866 |
max_f1 | 0.7286 |
max_f1_threshold | 237.6859 |
max_precision | 0.6746 |
max_recall | 0.8602 |
max_ap | 0.7731 |
Paraphrase Mining
- Dataset:
quora-duplicates-dev
- Evaluated with
ParaphraseMiningEvaluator
Metric | Value |
---|---|
average_precision | 0.5349 |
f1 | 0.5395 |
precision | 0.5175 |
recall | 0.5635 |
threshold | 0.762 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9646 |
cosine_accuracy@3 | 0.9926 |
cosine_accuracy@5 | 0.9956 |
cosine_accuracy@10 | 0.9986 |
cosine_precision@1 | 0.9646 |
cosine_precision@3 | 0.4293 |
cosine_precision@5 | 0.2754 |
cosine_precision@10 | 0.1452 |
cosine_recall@1 | 0.8301 |
cosine_recall@3 | 0.9609 |
cosine_recall@5 | 0.9808 |
cosine_recall@10 | 0.9935 |
cosine_ndcg@10 | 0.9795 |
cosine_mrr@10 | 0.979 |
cosine_map@100 | 0.9718 |
dot_accuracy@1 | 0.9574 |
dot_accuracy@3 | 0.9876 |
dot_accuracy@5 | 0.9924 |
dot_accuracy@10 | 0.9978 |
dot_precision@1 | 0.9574 |
dot_precision@3 | 0.4257 |
dot_precision@5 | 0.2737 |
dot_precision@10 | 0.1447 |
dot_recall@1 | 0.8238 |
dot_recall@3 | 0.9538 |
dot_recall@5 | 0.9764 |
dot_recall@10 | 0.9918 |
dot_ndcg@10 | 0.9741 |
dot_mrr@10 | 0.9731 |
dot_map@100 | 0.9646 |
Training Details
Training Dataset
sentence-transformers/quora-duplicates
- Dataset: sentence-transformers/quora-duplicates at 451a485
- Size: 100,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 13.85 tokens
- max: 42 tokens
- min: 6 tokens
- mean: 13.65 tokens
- max: 44 tokens
- min: 4 tokens
- mean: 14.76 tokens
- max: 64 tokens
- Samples:
anchor positive negative Why in India do we not have one on one political debate as in USA?
Why cant we have a public debate between politicians in India like the one in US?
Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?
What is OnePlus One?
How is oneplus one?
Why is OnePlus One so good?
Does our mind control our emotions?
How do smart and successful people control their emotions?
How can I control my positive emotions for the people whom I love but they don't care about me?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
sentence-transformers/quora-duplicates
- Dataset: sentence-transformers/quora-duplicates at 451a485
- Size: 1,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 13.84 tokens
- max: 43 tokens
- min: 6 tokens
- mean: 13.8 tokens
- max: 38 tokens
- min: 6 tokens
- mean: 14.71 tokens
- max: 56 tokens
- Samples:
anchor positive negative Which programming language is best for developing low-end games?
What coding language should I learn first for making games?
I am entering the world of video game programming and want to know what language I should learn? Because there are so many languages I do not know which one to start with. Can you recommend a language that's easy to learn and can be used with many platforms?
Was it appropriate for Meryl Streep to use her Golden Globes speech to attack Donald Trump?
Should Meryl Streep be using her position to attack the president?
Why did Kelly Ann Conway say that Meryl Streep incited peoples worst feelings?
Where can I found excellent commercial fridges in Sydney?
Where can I found impressive range of commercial fridges in Sydney?
What is the best grocery delivery service in Sydney?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Falseper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Nonedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | cosine_map@100 | quora-duplicates-dev_average_precision | quora-duplicates_max_ap |
---|---|---|---|---|---|---|
0 | 0 | - | - | 0.9245 | 0.4200 | 0.6890 |
0.0640 | 100 | 0.2535 | - | - | - | - |
0.1280 | 200 | 0.1732 | - | - | - | - |
0.1599 | 250 | - | 0.1021 | 0.9601 | 0.5033 | 0.7342 |
0.1919 | 300 | 0.1465 | - | - | - | - |
0.2559 | 400 | 0.1186 | - | - | - | - |
0.3199 | 500 | 0.1159 | 0.0773 | 0.9653 | 0.5247 | 0.7453 |
0.3839 | 600 | 0.1088 | - | - | - | - |
0.4479 | 700 | 0.0993 | - | - | - | - |
0.4798 | 750 | - | 0.0665 | 0.9666 | 0.5264 | 0.7655 |
0.5118 | 800 | 0.0952 | - | - | - | - |
0.5758 | 900 | 0.0799 | - | - | - | - |
0.6398 | 1000 | 0.0855 | 0.0570 | 0.9709 | 0.5391 | 0.7717 |
0.7038 | 1100 | 0.0804 | - | - | - | - |
0.7678 | 1200 | 0.073 | - | - | - | - |
0.7997 | 1250 | - | 0.0513 | 0.9719 | 0.5329 | 0.7662 |
0.8317 | 1300 | 0.0741 | - | - | - | - |
0.8957 | 1400 | 0.0699 | - | - | - | - |
0.9597 | 1500 | 0.0755 | 0.0476 | 0.9718 | 0.5349 | 0.7731 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.039 kWh
- Carbon Emitted: 0.015 kg of CO2
- Hours Used: 0.169 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}