Wav2Vec2-Base-960h
This repository is a reimplementation of official Facebook’s wav2vec. There is no description of converting the wav2vec pretrain model to a pytorch.bin file. We are rebuilding pytorch.bin from the pretrain model. Here is the conversion method.
pip install transformers[sentencepiece]
pip install fairseq -U
git clone https://github.com/huggingface/transformers.git
cp transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py .
wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small_960h.pt -O ./wav2vec_small_960h.pt
mkdir dict
wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt
mkdir outputs
python convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py --pytorch_dump_folder_path ./outputs --checkpoint_path ./wav2vec_small_960h.pt --dict_path ./dict
Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
from datasets import load_dataset
import soundfile as sf
import torch
# load model and tokenizer
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
# define function to read in sound file
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
# load dummy dataset and read soundfiles
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
ds = ds.map(map_to_array)
# tokenize
input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.batch_decode(predicted_ids)
Evaluation
This code snippet shows how to evaluate facebook/wav2vec2-base-960h on LibriSpeech's "clean" and "other" test data.
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
import soundfile as sf
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
librispeech_eval = librispeech_eval.map(map_to_array)
def map_to_pred(batch):
input_values = tokenizer(batch["speech"], return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
print("WER:", wer(result["text"], result["transcription"]))
Result (WER):
"clean" | "other" |
---|---|
3.4 | 8.6 |
Reference
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.