tony4194's picture
Update README.md
50eb188
|
raw
history blame
2.38 kB
metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilBERT-infoExtract
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.9133716160787531
          - name: Recall
            type: recall
            value: 0.9368899360484685
          - name: F1
            type: f1
            value: 0.9249813076347928
          - name: Accuracy
            type: accuracy
            value: 0.9832077471007241
language:
  - en

distilBERT-infoExtract

This model is a fine-tuned version of distilbert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0718
  • Precision: 0.9134
  • Recall: 0.9369
  • F1: 0.9250
  • Accuracy: 0.9832

Model description

The model can identify human name, organization and location so far (no time recognition). It was trained for 5 minutes with T4 GPU on Colab.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0954 1.0 1756 0.0846 0.8880 0.9194 0.9034 0.9769
0.0498 2.0 3512 0.0699 0.9057 0.9310 0.9182 0.9815
0.031 3.0 5268 0.0718 0.9134 0.9369 0.9250 0.9832

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1