ConvLLaVA-JP Model Card
Model detail
Model type:
ConvLLaVA-JP is a vision-language model that can converse about input images.
This model is an LVLM model trained using laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft as the image encoder and llm-jp/llm-jp-1.3b-v1.0 as the text decoder. Input of 1280 x 1280 high resolution.
Training:
This model was initially trained with Vision Projector and Stage 5 using LLaVA-Pretrain-JA.
In the second phase, it was trained Image Encoder, Vision Projector, Stage 5 and LLM using LLaVA-Pretrain-JA.
In the third phase, it was fine-tuned with Vision Projector and LLM using LLaVA-v1.5-Instruct-620K-JA.
resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main
Comparing VLMs
Model | JA-VG-VQA-500 (ROUGE-L) |
JA-VLM-Bench-In-the-Wild (ROUGE-L) |
Heron-Bench(Detail) | Heron-Bench(Conv) | Heron-Bench(Complex) | Heron-Bench(Average) |
---|---|---|---|---|---|---|
Japanese Stable VLM | - | 40.50 | 25.15 | 51.23 | 37.84 | 38.07 |
EvoVLM-JP-v1-7B | 19.70 | 51.25 | 50.31 | 44.42 | 40.47 | 45.07 |
Heron BLIP Japanese StableLM Base 7B llava-620k | 14.51 | 33.26 | 49.09 | 41.51 | 45.72 | 45.44 |
Heron GIT Japanese StableLM Base 7B | 15.18 | 37.82 | 42.77 | 54.20 | 43.53 | 46.83 |
llava-jp-1.3b-v1.0-620k | 12.69 | 44.58 | 51.21 | 41.05 | 45.95 | 44.84 |
llava-jp-1.3b-v1.1 | 13.33 | 44.40 | 50.00 | 51.83 | 48.98 | 50.39 |
ConvLLaVA-JP-1.3b-768 | 12.05 | 42.80 | 44.24 | 40.00 | 48.16 | 44.96 |
ConvLLaVA-JP-1.3b-1280 | 11.88 | 43.64 | 38.95 | 44.79 | 41.24 | 42.31 |
How to use the model
1. Download dependencies
git clone https://github.com/tosiyuki/LLaVA-JP.git
2. Inference
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.dataset import tokenizer_image_token
if __name__ == "__main__":
model_path = 'toshi456/ConvLLaVA-JP-1.3b-1280'
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model = LlavaGpt2ForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch_dtype,
device_map=device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1532,
padding_side="right",
use_fast=False,
)
model.eval()
conv_mode = "v1"
conv = conv_templates[conv_mode].copy()
# image pre-process
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
if device == "cuda":
image_tensor = model.get_model().vision_tower.image_processor(image).unsqueeze(0).half().cuda().to(torch_dtype)
else:
image_tensor = model.get_model().vision_tower.image_processor(image).unsqueeze(0).to(torch_dtype)
# create prompt
# ユーザー: <image>\n{prompt}
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
# predict
with torch.inference_mode():
output_id = model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=False,
temperature=1.0,
top_p=1.0,
max_new_tokens=256,
streamer=streamer,
use_cache=True,
)
"""猫の隣にはノートパソコンがあります。"""
Training dataset
Stage1 and Stage2 Pretrain
Stage3 Fine-tuning
Acknowledgement
License
cc-by-nc-4.0
- Downloads last month
- 19