metadata
library_name: peft
base_model: beomi/open-llama-2-ko-7b
license: cc-by-sa-4.0
datasets:
- traintogpb/aihub-flores-koen-integrated-sparta-30k
language:
- en
- ko
metrics:
- sacrebleu
- comet
pipeline_tag: translation
tags:
- translation
- text-generation
- ko2en
- en2ko
Pretrained LM
- beomi/open-llama-2-ko-7b (MIT License)
Training Dataset
- traintogpb/aihub-flores-koen-integrated-sparta-30k
- Can translate in Enlgish-Korean (bi-directional)
Prompt
Template:
prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:" >>> # src_lang can be 'English', '한국어' >>> # tgt_lang can be '한국어', 'English'
Issue: The tokenizer of the model tokenizes the prompt below in different way with the prompt above. Make sure to use the prompt proposed above.
prompt = f"""Translate this from {src_lang} to {tgt_lang} ### {src_lang}: {src_text} ### {tgt_lang}:""" >>> # DO NOT USE this prompt
And mind that there is no "space (
_
)" at the end of the prompt.
Training
- Trained with QLoRA
- PLM: NormalFloat 4-bit
- Adapter: BrainFloat 16-bit
- Adapted to all the linear layers (around 2.2%)
Usage (IMPORTANT)
- Should remove the EOS token (
<|endoftext|>
, id=46332) at the end of the prompt.# MODEL plm_name = 'beomi/open-llama-2-ko-7b' adapter_name = 'traintogpb/llama-2-enko-translator-7b-qlora-adapter' model = LlamaForCausalLM.from_pretrained( plm_name, max_length=768, quantization_config=bnb_config, # Use the QLoRA config above attn_implementation='flash_attention_2', torch_dtype=torch.bfloat16 ) model = PeftModel.from_pretrained( model, adapter_name, torch_dtype=torch.bfloat16 ) # TOKENIZER tokenizer = LlamaTokenizer.from_pretrained(plm_name) tokenizer.pad_token = "</s>" tokenizer.pad_token_id = 2 tokenizer.eos_token = "<|endoftext|>" # Must be differentiated from the PAD token tokenizer.eos_token_id = 46332 tokenizer.add_eos_token = True tokenizer.model_max_length = 768 # INFERENCE text = "NMIXX is the world-best female idol group, who came back with the new song 'DASH'." prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:" inputs = tokenizer(prompt, return_tensors="pt", max_length=max_length, truncation=True) # REMOVE EOS TOKEN IN THE PROMPT inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0) inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0) outputs = model.generate(**inputs, max_length=max_length, eos_token_id=46332) input_len = len(inputs['input_ids'].squeeze()) translated_text = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True) print(translated_text)