trangannh commited on
Commit
34250bf
1 Parent(s): 401af4a

Update job_recommendation_inference.py

Browse files
Files changed (1) hide show
  1. job_recommendation_inference.py +5 -5
job_recommendation_inference.py CHANGED
@@ -4,7 +4,7 @@ from sklearn.feature_extraction.text import TfidfVectorizer
4
  from sklearn.metrics.pairwise import cosine_similarity
5
  import json
6
 
7
- def recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, companies, tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vec, companies_majors_vec):
8
  input_hard_skills_vec = tfidf_vectorizer_skills.transform([input_hard_skills])
9
  input_soft_skills_vec = tfidf_vectorizer_skills.transform([input_soft_skills])
10
  input_major_vec = tfidf_vectorizer_majors.transform([input_major])
@@ -22,9 +22,9 @@ def recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_
22
  combined_similarity = (skills_similarity + major_similarity) / 2
23
 
24
  sorted_company_indices = np.argsort(-combined_similarity[0])
25
- recommended_companies = companies.iloc[sorted_company_indices]['Major'].values[:3]
26
 
27
- return recommended_companies
28
 
29
  def handler(event, context):
30
  input_data = json.loads(event['body'])
@@ -61,5 +61,5 @@ def handler(event, context):
61
 
62
  return {
63
  'statusCode': 200,
64
- 'body': json.dumps(recommended_jobs.tolist())
65
- }
 
4
  from sklearn.metrics.pairwise import cosine_similarity
5
  import json
6
 
7
+ def recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, jobs, tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vec, companies_majors_vec):
8
  input_hard_skills_vec = tfidf_vectorizer_skills.transform([input_hard_skills])
9
  input_soft_skills_vec = tfidf_vectorizer_skills.transform([input_soft_skills])
10
  input_major_vec = tfidf_vectorizer_majors.transform([input_major])
 
22
  combined_similarity = (skills_similarity + major_similarity) / 2
23
 
24
  sorted_company_indices = np.argsort(-combined_similarity[0])
25
+ recommended_companies = jobs.iloc[sorted_company_indices]['Major'].values[:3]
26
 
27
+ return recommended_companies.tolist()
28
 
29
  def handler(event, context):
30
  input_data = json.loads(event['body'])
 
61
 
62
  return {
63
  'statusCode': 200,
64
+ 'body': json.dumps(recommended_jobs)
65
+ }