metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.88
ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6087
- Accuracy: 0.88
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9526 | 1.0 | 112 | 1.8797 | 0.74 |
0.9704 | 2.0 | 225 | 1.0561 | 0.7 |
0.7957 | 3.0 | 337 | 0.7362 | 0.77 |
0.4428 | 4.0 | 450 | 0.7820 | 0.8 |
0.1422 | 5.0 | 562 | 0.6142 | 0.84 |
0.3502 | 6.0 | 675 | 0.9189 | 0.82 |
0.01 | 7.0 | 787 | 0.7735 | 0.83 |
0.0068 | 8.0 | 900 | 1.0699 | 0.81 |
0.1751 | 9.0 | 1012 | 0.5360 | 0.88 |
0.0045 | 10.0 | 1125 | 0.5377 | 0.89 |
0.154 | 11.0 | 1237 | 0.6542 | 0.86 |
0.0025 | 12.0 | 1350 | 0.6206 | 0.89 |
0.0022 | 13.0 | 1462 | 0.6118 | 0.88 |
0.0021 | 14.0 | 1575 | 0.5961 | 0.89 |
0.0018 | 15.0 | 1687 | 0.5958 | 0.88 |
0.0017 | 16.0 | 1800 | 0.6062 | 0.88 |
0.0017 | 17.0 | 1912 | 0.6005 | 0.88 |
0.0015 | 18.0 | 2025 | 0.6052 | 0.88 |
0.0014 | 19.0 | 2137 | 0.6114 | 0.88 |
0.0015 | 19.91 | 2240 | 0.6087 | 0.88 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0