tranquil-morning's picture
End of training
e31833f
metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.88

ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6087
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9526 1.0 112 1.8797 0.74
0.9704 2.0 225 1.0561 0.7
0.7957 3.0 337 0.7362 0.77
0.4428 4.0 450 0.7820 0.8
0.1422 5.0 562 0.6142 0.84
0.3502 6.0 675 0.9189 0.82
0.01 7.0 787 0.7735 0.83
0.0068 8.0 900 1.0699 0.81
0.1751 9.0 1012 0.5360 0.88
0.0045 10.0 1125 0.5377 0.89
0.154 11.0 1237 0.6542 0.86
0.0025 12.0 1350 0.6206 0.89
0.0022 13.0 1462 0.6118 0.88
0.0021 14.0 1575 0.5961 0.89
0.0018 15.0 1687 0.5958 0.88
0.0017 16.0 1800 0.6062 0.88
0.0017 17.0 1912 0.6005 0.88
0.0015 18.0 2025 0.6052 0.88
0.0014 19.0 2137 0.6114 0.88
0.0015 19.91 2240 0.6087 0.88

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0