metadata
license: cc0-1.0
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: bluebert_pubmed_mimic_uncased_squadv2
results: []
bluebert_pubmed_mimic_uncased_squadv2
This model is a fine-tuned version of bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12 on the squad_v2 dataset.
Intended uses & limitations
This is the first model on huggingface that combines MIMIC data (https://mimic.mit.edu/) with squadv2 (https://huggingface.co/datasets/squad_v2) for question answering purposes.
Training and evaluation data
- Takes a pretrained model (https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12) and fine-tunes and evaluates on squad_v2 data.
Training procedure
Tuning script used (.bat file):
@echo off
set BASE_MODEL=bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
set OUTPUT_DIR=U:\Documents\Breast_Non_Synoptic\results\pretrained\bluebert_pubmed_mimic_uncased_squadv2\
python run_qa.py ^
--model_name_or_path %BASE_MODEL% ^
--dataset_name squad_v2 ^
--do_train ^
--do_eval ^
--version_2_with_negative ^
--per_device_train_batch_size 16 ^
--learning_rate 2e-5 ^
--num_train_epochs 3 ^
--max_seq_length 480 ^
--doc_stride 64 ^
--weight_decay 0.01 ^
--output_dir %OUTPUT_DIR%
You may need to adapt this script for non-Windows operating systems.
The run_qa.py example script can be found here.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.2