|
--- |
|
base_model: NlpHUST/ner-vietnamese-electra-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: ner-education-hcmut |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner-education-hcmut |
|
|
|
This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0985 |
|
- Location: {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} |
|
- Miscellaneous: {'precision': 0.6069651741293532, 'recall': 0.7176470588235294, 'f1': 0.6576819407008085, 'number': 170} |
|
- Organization: {'precision': 0.4166666666666667, 'recall': 0.5769230769230769, 'f1': 0.48387096774193544, 'number': 26} |
|
- Person: {'precision': 0.75, 'recall': 0.6, 'f1': 0.6666666666666665, 'number': 10} |
|
- Overall Precision: 0.5863 |
|
- Overall Recall: 0.6887 |
|
- Overall F1: 0.6334 |
|
- Overall Accuracy: 0.9702 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Location | Miscellaneous | Organization | Person | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| No log | 1.0 | 269 | 0.1088 | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 0.46311475409836067, 'recall': 0.6647058823529411, 'f1': 0.5458937198067633, 'number': 170} | {'precision': 0.3333333333333333, 'recall': 0.46153846153846156, 'f1': 0.3870967741935484, 'number': 26} | {'precision': 0.6666666666666666, 'recall': 0.6, 'f1': 0.631578947368421, 'number': 10} | 0.4573 | 0.6321 | 0.5307 | 0.9631 | |
|
| 0.1453 | 2.0 | 538 | 0.0948 | {'precision': 1.0, 'recall': 0.5, 'f1': 0.6666666666666666, 'number': 6} | {'precision': 0.5525114155251142, 'recall': 0.711764705882353, 'f1': 0.622107969151671, 'number': 170} | {'precision': 0.42424242424242425, 'recall': 0.5384615384615384, 'f1': 0.47457627118644075, 'number': 26} | {'precision': 0.75, 'recall': 0.6, 'f1': 0.6666666666666665, 'number': 10} | 0.5475 | 0.6792 | 0.6063 | 0.9654 | |
|
| 0.1453 | 3.0 | 807 | 0.0985 | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 0.6069651741293532, 'recall': 0.7176470588235294, 'f1': 0.6576819407008085, 'number': 170} | {'precision': 0.4166666666666667, 'recall': 0.5769230769230769, 'f1': 0.48387096774193544, 'number': 26} | {'precision': 0.75, 'recall': 0.6, 'f1': 0.6666666666666665, 'number': 10} | 0.5863 | 0.6887 | 0.6334 | 0.9702 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|