metadata
base_model: microsoft/Phi-3-mini-4k-instruct
library_name: peft
license: mit
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: phi-3-text2sql-modal
results: []
phi-3-text2sql-modal
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7743
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 2.8715 |
1.3561 | 0.1072 | 500 | 0.8902 |
0.8557 | 0.2143 | 1000 | 0.8305 |
0.815 | 0.3215 | 1500 | 0.8092 |
0.7983 | 0.4287 | 2000 | 0.7938 |
0.7896 | 0.5358 | 2500 | 0.7866 |
0.7873 | 0.6430 | 3000 | 0.7800 |
0.7804 | 0.7502 | 3500 | 0.7764 |
0.7725 | 0.8574 | 4000 | 0.7749 |
0.7733 | 0.9645 | 4500 | 0.7743 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.19.1