Edit model card

MedQA_L3_1000steps_1e6rate_01beat_CSFTDPO

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4018
  • Rewards/chosen: -1.1456
  • Rewards/rejected: -2.9172
  • Rewards/accuracies: 0.7912
  • Rewards/margins: 1.7716
  • Logps/rejected: -50.4889
  • Logps/chosen: -29.6790
  • Logits/rejected: -1.3967
  • Logits/chosen: -1.3936

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.695 0.0489 50 0.6713 0.0342 -0.0142 0.6615 0.0484 -21.4583 -17.8807 -0.9400 -0.9395
0.6187 0.0977 100 0.5915 -0.1174 -0.4200 0.7121 0.3027 -25.5168 -19.3963 -1.0412 -1.0403
0.5652 0.1466 150 0.5103 -0.6250 -1.3027 0.7495 0.6777 -34.3433 -24.4723 -1.1124 -1.1110
0.4549 0.1954 200 0.5152 -1.3616 -2.3988 0.7231 1.0372 -45.3043 -31.8385 -1.2048 -1.2020
0.4875 0.2443 250 0.4642 -0.6443 -1.7506 0.7648 1.1063 -38.8228 -24.6654 -1.1785 -1.1765
0.4433 0.2931 300 0.4453 -0.8917 -2.2308 0.8044 1.3391 -43.6244 -27.1394 -1.2423 -1.2401
0.5036 0.3420 350 0.4581 -0.7568 -2.0680 0.7692 1.3112 -41.9963 -25.7907 -1.2182 -1.2158
0.6285 0.3908 400 0.4703 -0.6136 -1.9063 0.7604 1.2927 -40.3798 -24.3588 -1.2386 -1.2361
0.5726 0.4397 450 0.4732 -0.4602 -1.5238 0.7692 1.0636 -36.5545 -22.8248 -1.2652 -1.2626
0.5198 0.4885 500 0.4280 -0.9825 -2.4466 0.8066 1.4641 -45.7828 -28.0480 -1.3426 -1.3399
0.3963 0.5374 550 0.4236 -0.9424 -2.3856 0.8022 1.4432 -45.1725 -27.6467 -1.3514 -1.3488
0.3233 0.5862 600 0.4127 -0.9551 -2.5770 0.8000 1.6219 -47.0868 -27.7738 -1.3761 -1.3733
0.3955 0.6351 650 0.4236 -0.9988 -2.7155 0.7846 1.7167 -48.4714 -28.2110 -1.3837 -1.3806
0.3121 0.6839 700 0.4109 -1.0837 -2.8282 0.7868 1.7445 -49.5986 -29.0595 -1.3902 -1.3871
0.4809 0.7328 750 0.4060 -1.1344 -2.8863 0.7846 1.7519 -50.1796 -29.5667 -1.3954 -1.3923
0.4075 0.7816 800 0.4013 -1.1649 -2.9284 0.7868 1.7635 -50.6008 -29.8717 -1.3971 -1.3939
0.584 0.8305 850 0.4014 -1.1482 -2.9188 0.7890 1.7706 -50.5041 -29.7042 -1.3971 -1.3939
0.5942 0.8793 900 0.4042 -1.1517 -2.9160 0.7846 1.7643 -50.4761 -29.7394 -1.3965 -1.3934
0.3169 0.9282 950 0.4040 -1.1507 -2.9162 0.7934 1.7655 -50.4786 -29.7294 -1.3965 -1.3934
0.2727 0.9770 1000 0.4018 -1.1456 -2.9172 0.7912 1.7716 -50.4889 -29.6790 -1.3967 -1.3936

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.0.0+cu117
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
8.03B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tsavage68/MedQA_L3_1000steps_1e6rate_01beat_CSFTDPO

Finetuned
(449)
this model