metadata
library_name: transformers
license: apache-2.0
base_model: tsavage68/Na_M2_1000steps_1e7_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: Na_M2_1000steps_1e8rate_01beta_cSFTDPO
results: []
Na_M2_1000steps_1e8rate_01beta_cSFTDPO
This model is a fine-tuned version of tsavage68/Na_M2_1000steps_1e7_SFT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6023
- Rewards/chosen: 0.0529
- Rewards/rejected: -0.1392
- Rewards/accuracies: 1.0
- Rewards/margins: 0.1921
- Logps/rejected: -81.3154
- Logps/chosen: -47.6033
- Logits/rejected: -2.5345
- Logits/chosen: -2.5471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6929 | 0.2667 | 50 | 0.6931 | -0.0010 | -0.0014 | 0.5700 | 0.0003 | -79.9371 | -48.1427 | -2.5355 | -2.5481 |
0.6881 | 0.5333 | 100 | 0.6832 | 0.0062 | -0.0142 | 0.6900 | 0.0204 | -80.0656 | -48.0704 | -2.5357 | -2.5482 |
0.6652 | 0.8 | 150 | 0.6568 | 0.0223 | -0.0526 | 0.9500 | 0.0748 | -80.4490 | -47.9098 | -2.5356 | -2.5482 |
0.6475 | 1.0667 | 200 | 0.6389 | 0.0327 | -0.0794 | 1.0 | 0.1121 | -80.7177 | -47.8054 | -2.5355 | -2.5481 |
0.6224 | 1.3333 | 250 | 0.6217 | 0.0389 | -0.1104 | 1.0 | 0.1492 | -81.0270 | -47.7436 | -2.5352 | -2.5477 |
0.6068 | 1.6 | 300 | 0.6115 | 0.0553 | -0.1167 | 1.0 | 0.1720 | -81.0905 | -47.5798 | -2.5353 | -2.5478 |
0.6018 | 1.8667 | 350 | 0.6041 | 0.0523 | -0.1359 | 1.0 | 0.1882 | -81.2823 | -47.6092 | -2.5345 | -2.5471 |
0.5976 | 2.1333 | 400 | 0.6021 | 0.0543 | -0.1384 | 1.0 | 0.1927 | -81.3072 | -47.5892 | -2.5349 | -2.5474 |
0.5952 | 2.4 | 450 | 0.5993 | 0.0581 | -0.1408 | 1.0 | 0.1990 | -81.3318 | -47.5512 | -2.5343 | -2.5468 |
0.6013 | 2.6667 | 500 | 0.6022 | 0.0541 | -0.1384 | 1.0 | 0.1925 | -81.3071 | -47.5913 | -2.5347 | -2.5472 |
0.5981 | 2.9333 | 550 | 0.6027 | 0.0571 | -0.1340 | 1.0 | 0.1911 | -81.2633 | -47.5610 | -2.5348 | -2.5473 |
0.6006 | 3.2 | 600 | 0.6009 | 0.0589 | -0.1365 | 1.0 | 0.1954 | -81.2883 | -47.5433 | -2.5347 | -2.5473 |
0.5961 | 3.4667 | 650 | 0.6036 | 0.0539 | -0.1354 | 1.0 | 0.1893 | -81.2771 | -47.5931 | -2.5350 | -2.5476 |
0.5896 | 3.7333 | 700 | 0.6024 | 0.0550 | -0.1368 | 1.0 | 0.1918 | -81.2913 | -47.5819 | -2.5345 | -2.5471 |
0.593 | 4.0 | 750 | 0.6023 | 0.0529 | -0.1392 | 1.0 | 0.1921 | -81.3154 | -47.6033 | -2.5345 | -2.5471 |
0.603 | 4.2667 | 800 | 0.6023 | 0.0529 | -0.1392 | 1.0 | 0.1921 | -81.3154 | -47.6033 | -2.5345 | -2.5471 |
0.5989 | 4.5333 | 850 | 0.6023 | 0.0529 | -0.1392 | 1.0 | 0.1921 | -81.3154 | -47.6033 | -2.5345 | -2.5471 |
0.5879 | 4.8 | 900 | 0.6023 | 0.0529 | -0.1392 | 1.0 | 0.1921 | -81.3154 | -47.6033 | -2.5345 | -2.5471 |
0.5949 | 5.0667 | 950 | 0.6023 | 0.0529 | -0.1392 | 1.0 | 0.1921 | -81.3154 | -47.6033 | -2.5345 | -2.5471 |
0.5974 | 5.3333 | 1000 | 0.6023 | 0.0529 | -0.1392 | 1.0 | 0.1921 | -81.3154 | -47.6033 | -2.5345 | -2.5471 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1