metadata
license: llama3
base_model: tsavage68/Summary_L3_1000steps_1e7rate_SFT2
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: Summary_L3_1000steps_1e6rate_01beta_CSFTDPO
results: []
Summary_L3_1000steps_1e6rate_01beta_CSFTDPO
This model is a fine-tuned version of tsavage68/Summary_L3_1000steps_1e7rate_SFT2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5961
- Rewards/chosen: -0.0885
- Rewards/rejected: -2.0984
- Rewards/accuracies: 0.1400
- Rewards/margins: 2.0099
- Logps/rejected: -36.2478
- Logps/chosen: -10.2675
- Logits/rejected: -1.2445
- Logits/chosen: -1.2412
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.571 | 0.2004 | 50 | 0.5986 | 0.0271 | -0.6059 | 0.1400 | 0.6329 | -21.3224 | -9.1122 | -1.1153 | -1.1163 |
0.6585 | 0.4008 | 100 | 0.5962 | 0.0177 | -1.2883 | 0.1400 | 1.3060 | -28.1472 | -9.2058 | -1.1739 | -1.1725 |
0.6238 | 0.6012 | 150 | 0.5961 | -0.0262 | -1.7529 | 0.1400 | 1.7267 | -32.7924 | -9.6448 | -1.2119 | -1.2094 |
0.6065 | 0.8016 | 200 | 0.5961 | -0.0848 | -2.0675 | 0.1400 | 1.9828 | -35.9388 | -10.2303 | -1.2396 | -1.2364 |
0.6238 | 1.0020 | 250 | 0.5961 | -0.0864 | -2.0702 | 0.1400 | 1.9839 | -35.9662 | -10.2464 | -1.2401 | -1.2369 |
0.6238 | 1.2024 | 300 | 0.5961 | -0.0864 | -2.0688 | 0.1400 | 1.9824 | -35.9522 | -10.2471 | -1.2396 | -1.2364 |
0.6238 | 1.4028 | 350 | 0.5961 | -0.0866 | -2.0730 | 0.1400 | 1.9864 | -35.9935 | -10.2485 | -1.2409 | -1.2378 |
0.5718 | 1.6032 | 400 | 0.5961 | -0.0880 | -2.0816 | 0.1400 | 1.9937 | -36.0800 | -10.2625 | -1.2420 | -1.2388 |
0.5892 | 1.8036 | 450 | 0.5961 | -0.0869 | -2.0872 | 0.1400 | 2.0004 | -36.1360 | -10.2514 | -1.2428 | -1.2396 |
0.5718 | 2.0040 | 500 | 0.5961 | -0.0873 | -2.0879 | 0.1400 | 2.0006 | -36.1431 | -10.2557 | -1.2431 | -1.2399 |
0.5718 | 2.2044 | 550 | 0.5961 | -0.0872 | -2.0916 | 0.1400 | 2.0044 | -36.1798 | -10.2553 | -1.2434 | -1.2402 |
0.5545 | 2.4048 | 600 | 0.5961 | -0.0893 | -2.0984 | 0.1400 | 2.0091 | -36.2481 | -10.2761 | -1.2448 | -1.2416 |
0.5199 | 2.6052 | 650 | 0.5961 | -0.0881 | -2.0960 | 0.1400 | 2.0078 | -36.2235 | -10.2642 | -1.2437 | -1.2405 |
0.6238 | 2.8056 | 700 | 0.5961 | -0.0891 | -2.1004 | 0.1400 | 2.0113 | -36.2677 | -10.2740 | -1.2450 | -1.2417 |
0.6065 | 3.0060 | 750 | 0.5961 | -0.0879 | -2.0983 | 0.1400 | 2.0104 | -36.2469 | -10.2615 | -1.2456 | -1.2423 |
0.6412 | 3.2064 | 800 | 0.5961 | -0.0900 | -2.1003 | 0.1400 | 2.0103 | -36.2667 | -10.2828 | -1.2448 | -1.2416 |
0.6585 | 3.4068 | 850 | 0.5961 | -0.0875 | -2.0997 | 0.1400 | 2.0122 | -36.2604 | -10.2578 | -1.2456 | -1.2424 |
0.6238 | 3.6072 | 900 | 0.5961 | -0.0879 | -2.0992 | 0.1400 | 2.0114 | -36.2559 | -10.2613 | -1.2445 | -1.2413 |
0.5372 | 3.8076 | 950 | 0.5961 | -0.0884 | -2.0981 | 0.1400 | 2.0097 | -36.2444 | -10.2669 | -1.2444 | -1.2412 |
0.6238 | 4.0080 | 1000 | 0.5961 | -0.0885 | -2.0984 | 0.1400 | 2.0099 | -36.2478 | -10.2675 | -1.2445 | -1.2412 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.0.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1