tttx
/

PEFT
Safetensors
llama
alignment-handbook
trl
sft
Generated from Trainer
Edit model card

arc-heavy-llama3.1-8b-lora64-testtime-finetuning

This model is a fine-tuned version of barc0/Llama-3.1-ARC-Heavy-Transduction-8B on the tttx/test-ttft, the barc0/transduction_formatted_rearc_dataset_100k and the barc0/transduction_heavy_100k_jsonl datasets. It achieves the following results on the evaluation set:

  • Loss: 0.0401

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.0373 1.0 667 0.0589
0.0344 2.0 1334 0.0550
0.009 3.0 2001 0.0401

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
14
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tttx/arc-heavy-llama3.1-8b-lora64-testtime-finetuning

Datasets used to train tttx/arc-heavy-llama3.1-8b-lora64-testtime-finetuning