ttwj-sutd's picture
update model card README.md
36eedbc
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imdb
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: finetuning-sentiment-model-3000-samples-6pm
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: imdb
          type: imdb
          args: plain_text
        metrics:
          - name: Precision
            type: precision
            value: 0.875
          - name: Recall
            type: recall
            value: 0.8866666666666667
          - name: F1
            type: f1
            value: 0.880794701986755
          - name: Accuracy
            type: accuracy
            value: 0.88

finetuning-sentiment-model-3000-samples-6pm

This model is a fine-tuned version of distilbert-base-uncased on the imdb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2896
  • Precision: 0.875
  • Recall: 0.8867
  • F1: 0.8808
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 11

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 188 0.3436 0.8633 0.8 0.8304 0.8367
No log 2.0 376 0.2896 0.875 0.8867 0.8808 0.88
0.3 3.0 564 0.3330 0.8693 0.8867 0.8779 0.8767
0.3 4.0 752 0.4378 0.8766 0.9 0.8882 0.8867
0.3 5.0 940 0.5198 0.8284 0.9333 0.8777 0.87

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1