mBart-large-50-KQA / README.md
tykea's picture
Update README.md
4321a0b verified
|
raw
history blame
1.7 kB
---
license: mit
language:
- km
metrics:
- accuracy
base_model:
- facebook/mbart-large-50
library_name: transformers
datasets:
- kimleang123/khmer_question_answer
---
## How to use the model
Import model and tokenizer from transformer libray
```py
# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("tykea/mBart-large-50-KQA")
model = AutoModelForSeq2SeqLM.from_pretrained("tykea/mBart-large-50-KQA")
```
Define function to take question and pass to the model
```py
import torch
#ask function for easier asking
def ask(custom_question):
# Tokenize the input
inputs = tokenizer(
f"qestion: {custom_question}",
return_tensors="pt",
truncation=True,
max_length=512,
padding="max_length"
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inputs = {key: value.to(device) for key, value in inputs.items()}
model.eval()
with torch.no_grad():
outputs = model.generate(
input_ids=inputs["input_ids"],
max_length=50,
num_beams=4,
repetition_penalty=2.0,
early_stopping=True,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7,
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"Question: {custom_question}")
print(f"Answer: {answer}")
```
Then call the function #ask function
```py
question = "αžαžΎαžšαžŸαŸ‹αž“αŸ…αž”αŸ’αžšαž‘αŸαžŸαžŽαžΆ"
ask(question)
#output
#Question: αžαžΎαžšαžŸαŸ‹αž“αŸ…αž”αŸ’αžšαž‘αŸαžŸαžŽαžΆ
#Answer: αžšαžŸαŸ‹αž“αŸ…αž”αŸ’αžšαž‘αŸαžŸαž’αž„αŸ‹αž‚αŸ’αž›αŸαžŸ
```