Edit model card

Model Details

🗽ΔLoRA=Δ(🦙W,🗽W) 🗽_{ΔLoRA} = \Delta_{(🦙_W, 🗽_W)}

🦙W+🗽ΔLoRA=🗽W🦙W🗽ΔLoRA=🦙W 🦙_W + 🗽_{ΔLoRA} = 🗽_W \\ 🦙_W - 🗽_{ΔLoRA} = 🦙_W

Model Sources

NousResearch/Hermes-2-Theta-Llama-3-8B

How to Get Started with the Model

Use the code below to get started with the model.

# pip install transformers peft

import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer

model_id = "meta-llama/Meta-Llama-3-8B"
peft_model_id = "typeof/Hermes-2-Theta-Llama-3-8B-delta-lora"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

system_prompt = """You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.
Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n    Args:\\n        symbol (str): The stock symbol.\\n\\n    Returns:\\n        dict: A dictionary containing fundamental data.\\n            Keys:\\n                - \'symbol\': The stock symbol.\\n                - \'company_name\': The long name of the company.\\n                - \'sector\': The sector to which the company belongs.\\n                - \'industry\': The industry to which the company belongs.\\n                - \'market_cap\': The market capitalization of the company.\\n                - \'pe_ratio\': The forward price-to-earnings ratio.\\n                - \'pb_ratio\': The price-to-book ratio.\\n                - \'dividend_yield\': The dividend yield.\\n                - \'eps\': The trailing earnings per share.\\n                - \'beta\': The beta value of the stock.\\n                - \'52_week_high\': The 52-week high price of the stock.\\n                - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}}  </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{"arguments": <args-dict>, "name": <function-name>}
</tool_call>"""

messages = [
    {"role": "system", "content": system_prompt},
    {"role": "user", "content": "Fetch the stock fundamentals data for Tesla (TSLA)"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
<|im_start|>assistant
<tool_call>
{"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
</tool_call><|im_end|>

... call tool and pass back prompt like so...

<|im_start|>tool
<tool_response>
{"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
</tool_response>
<|im_end|>
<|im_start|>assistant
The stock fundamentals data for Tesla (TSLA) are as follows:
- **Symbol**: TSLA
- **Company Name**: Tesla, Inc.
- **Sector**: Consumer Cyclical
- **Industry**: Auto Manufacturers
- **Market Capitalization**: $566,160,130,480
- **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
- **Price-to-Book Ratio (PB Ratio)**: 9.04
- **Dividend Yield**: N/A
- **Trailing Earnings Per Share (EPS)**: $4.3
- **Beta Value of the Stock**: 2.42
- **52-Week High Price of the Stock**: $299.29
- **52-Week Low Price of the Stock**: $152.37
This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>

Summary

LoRA QLoRA

Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for typeof/Hermes-2-Theta-Llama-3-8B-delta-lora

Adapter
(506)
this model

Collection including typeof/Hermes-2-Theta-Llama-3-8B-delta-lora