lmind_nq_train6000_eval6489_v1_doc_qa_v3_meta-llama_Llama-2-7b-chat-hf_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 1.9008
- Accuracy: 0.6022
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4745 | 1.0 | 529 | 1.3418 | 0.6122 |
1.414 | 2.0 | 1058 | 1.3398 | 0.5886 |
1.3204 | 3.0 | 1587 | 1.3659 | 0.6158 |
1.1963 | 4.0 | 2116 | 1.4242 | 0.61 |
1.0807 | 5.0 | 2645 | 1.5381 | 0.608 |
0.9652 | 6.0 | 3174 | 1.6063 | 0.5807 |
0.8552 | 7.0 | 3703 | 1.6981 | 0.6037 |
0.759 | 8.0 | 4232 | 1.7846 | 0.6042 |
0.6433 | 9.0 | 4761 | 1.8386 | 0.6028 |
0.5475 | 10.0 | 5290 | 1.9008 | 0.6022 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_meta-llama_Llama-2-7b-chat-hf_lora2
Base model
meta-llama/Llama-2-7b-chat-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_meta-llama_Llama-2-7b-chat-hf_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3self-reported0.602