lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4649
- Accuracy: 0.7967
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.8276 | 1.0 | 529 | 0.6129 | 1.6297 |
1.6971 | 2.0 | 1058 | 0.6290 | 1.5016 |
1.4581 | 3.0 | 1587 | 0.6485 | 1.3573 |
1.2293 | 4.0 | 2116 | 0.6700 | 1.1989 |
0.9705 | 5.0 | 2645 | 0.6936 | 1.0435 |
0.7526 | 6.0 | 3174 | 0.7159 | 0.8995 |
0.5841 | 7.0 | 3703 | 0.7358 | 0.7834 |
0.4653 | 8.0 | 4232 | 0.7514 | 0.6874 |
0.3755 | 9.0 | 4761 | 0.7667 | 0.5926 |
0.3156 | 10.0 | 5290 | 0.7757 | 0.5410 |
0.2652 | 11.0 | 5819 | 0.7829 | 0.5042 |
0.2319 | 12.0 | 6348 | 0.4819 | 0.7874 |
0.2047 | 13.0 | 6877 | 0.4747 | 0.7902 |
0.1889 | 14.0 | 7406 | 0.4667 | 0.7927 |
0.1728 | 15.0 | 7935 | 0.4688 | 0.7930 |
0.162 | 16.0 | 8464 | 0.4614 | 0.7947 |
0.1512 | 17.0 | 8993 | 0.4588 | 0.7958 |
0.1478 | 18.0 | 9522 | 0.4614 | 0.7957 |
0.1427 | 19.0 | 10051 | 0.4582 | 0.7970 |
0.1371 | 20.0 | 10580 | 0.4649 | 0.7967 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_lora2
Base model
Qwen/Qwen1.5-4BDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3self-reported0.797