lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_3e-4_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 7.1172
- Accuracy: 0.2372
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.2437 | 1.0 | 529 | 1.0755 | 0.6818 |
0.9735 | 2.0 | 1058 | 0.8411 | 0.7155 |
0.6397 | 3.0 | 1587 | 0.6257 | 0.7489 |
1.3459 | 4.0 | 2116 | 0.8503 | 0.7151 |
1.1476 | 5.0 | 2645 | 0.8346 | 0.7209 |
1.8664 | 6.0 | 3174 | 7.3107 | 0.2569 |
3.9053 | 7.0 | 3703 | 7.7302 | 0.2471 |
1.5508 | 8.0 | 4232 | 1.3488 | 0.6471 |
6.4691 | 9.0 | 4761 | 2.1549 | 0.5576 |
6.7585 | 10.0 | 5290 | 6.6001 | 0.2778 |
6.5214 | 11.0 | 5819 | 6.2226 | 0.3003 |
6.8901 | 12.0 | 6348 | 6.7372 | 0.2695 |
6.741 | 13.0 | 6877 | 6.6115 | 0.2727 |
6.6726 | 14.0 | 7406 | 6.5368 | 0.2759 |
6.459 | 15.0 | 7935 | 6.3441 | 0.2853 |
7.2285 | 16.0 | 8464 | 7.1937 | 0.2391 |
7.214 | 17.0 | 8993 | 7.1716 | 0.2394 |
7.228 | 18.0 | 9522 | 7.1818 | 0.2381 |
7.2538 | 19.0 | 10051 | 7.1597 | 0.2355 |
7.24 | 20.0 | 10580 | 7.1172 | 0.2372 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_3e-4_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_3e-4_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3self-reported0.237