lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3_Qwen_Qwen1.5-4B_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 2.4062
- Accuracy: 0.5899
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7823 | 0.9973 | 187 | 1.6938 | 0.6057 |
1.6543 | 2.0 | 375 | 1.6800 | 0.6076 |
1.526 | 2.9973 | 562 | 1.6967 | 0.6070 |
1.3835 | 4.0 | 750 | 1.7289 | 0.6067 |
1.2248 | 4.9973 | 937 | 1.7874 | 0.6050 |
1.0689 | 6.0 | 1125 | 1.8847 | 0.6018 |
0.8895 | 6.9973 | 1312 | 1.9975 | 0.5989 |
0.7219 | 8.0 | 1500 | 2.1065 | 0.5960 |
0.5575 | 8.9973 | 1687 | 2.2722 | 0.5920 |
0.4466 | 9.9733 | 1870 | 2.4062 | 0.5899 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 7
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3_Qwen_Qwen1.5-4B_lora2
Base model
Qwen/Qwen1.5-4BDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3_Qwen_Qwen1.5-4B_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3self-reported0.590