metadata
language:
- ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- ubulut/quran-verses-lite
metrics:
- wer
model-index:
- name: Whisper Tiny AR - Quran
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: quran-whisper-dataset-lite
type: ubulut/quran-verses-lite
config: default
split: None
args: 'config: ar, split: test'
metrics:
- name: Wer
type: wer
value: 94.30650684931507
Whisper Tiny AR - Quran
This model is a fine-tuned version of openai/whisper-tiny on the quran-whisper-dataset-lite dataset. It achieves the following results on the evaluation set:
- Loss: 2.2877
- Wer: 94.3065
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0026 | 17.2414 | 1000 | 2.0479 | 100.2997 |
0.0004 | 34.4828 | 2000 | 2.1836 | 94.0925 |
0.0002 | 51.7241 | 3000 | 2.2654 | 94.7346 |
0.0001 | 68.9655 | 4000 | 2.2877 | 94.3065 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1