distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1910
  • Accuracy: 0.9385
  • F1: 0.9385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 63 0.3110 0.907 0.9066
No log 2.0 126 0.2093 0.9255 0.9264
No log 3.0 189 0.1683 0.931 0.9312
0.2667 4.0 252 0.1564 0.932 0.9319
0.2667 5.0 315 0.1541 0.9325 0.9328
0.2667 6.0 378 0.1577 0.9375 0.9378
0.2667 7.0 441 0.1547 0.9355 0.9357
0.0894 8.0 504 0.1528 0.9385 0.9386
0.0894 9.0 567 0.1630 0.9395 0.9394
0.0894 10.0 630 0.1745 0.9425 0.9427
0.0894 11.0 693 0.1635 0.9385 0.9385
0.0567 12.0 756 0.1706 0.938 0.9381
0.0567 13.0 819 0.1740 0.941 0.9413
0.0567 14.0 882 0.1766 0.94 0.9403
0.0567 15.0 945 0.1832 0.938 0.9382
0.0397 16.0 1008 0.1871 0.9385 0.9388
0.0397 17.0 1071 0.1889 0.938 0.9382
0.0397 18.0 1134 0.1908 0.935 0.9354
0.0397 19.0 1197 0.1907 0.94 0.9399
0.0284 20.0 1260 0.1910 0.9385 0.9385

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
107
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ultimecia/distilbert-base-uncased-finetuned-emotion

Finetuned
(7549)
this model

Dataset used to train ultimecia/distilbert-base-uncased-finetuned-emotion

Evaluation results