Edit model card

from transformers import AutoTokenizer, TextStreamer from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM from unsloth import FastLanguageModel import torch alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

Instruction:

{}

Input:

{}

Response:

{}"""

Load the Peft configuration

config = PeftConfig.from_pretrained("umairimran/medical_chatbot_model_trained_on_ruslanmv_ai-medical-chatbot")

Load the base model from Hugging Face with float16 data type

base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Meta-Llama-3.1-8B-bnb-4bit", torch_dtype=torch.float16, # Switch to float16 device_map="auto" # Automatically map model to available devices )

Apply the PeftModel to the base model

model = PeftModel.from_pretrained(base_model, "umairimran/medical_chatbot_model_trained_on_ruslanmv_ai-medical-chatbot")

Initialize the tokenizer

tokenizer = AutoTokenizer.from_pretrained("unsloth/Meta-Llama-3.1-8B-bnb-4bit")

Optimize the model for inference (this applies if using FastLanguageModel)

FastLanguageModel.for_inference(model)

Prepare the input without using .to("cuda") because device_map="auto" handles it

inputs = tokenizer( alpaca_prompt.format( "hello doctor can you understand me i want to know about deseacse of flu", # instruction "i dont know how to flu", "", # output - leave this blank for generation! ), return_tensors="pt" )

Set up the streamer for output

text_streamer = TextStreamer(tokenizer)

Generate the output

_ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=128)

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for umairimran/model

Finetuned
(2406)
this model