File size: 2,584 Bytes
610e9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4003171
610e9bf
 
 
 
 
 
 
 
 
4003171
 
610e9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4003171
610e9bf
 
 
 
 
 
 
4003171
 
 
 
 
 
 
 
 
 
 
 
 
 
610e9bf
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-accents
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.2708333333333333
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-accents

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0374
- Accuracy: 0.2708

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.6
- num_epochs: 14
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.4741        | 1.0   | 48   | 2.4767          | 0.1042   |
| 2.4794        | 2.0   | 96   | 2.4594          | 0.1042   |
| 2.4795        | 3.0   | 144  | 2.4242          | 0.1042   |
| 2.3636        | 4.0   | 192  | 2.3929          | 0.1042   |
| 2.2958        | 5.0   | 240  | 2.3036          | 0.1667   |
| 2.2177        | 6.0   | 288  | 2.1868          | 0.1771   |
| 1.9929        | 7.0   | 336  | 2.0746          | 0.2396   |
| 1.9842        | 8.0   | 384  | 2.0638          | 0.2292   |
| 1.934         | 9.0   | 432  | 2.0566          | 0.2292   |
| 1.7302        | 10.0  | 480  | 2.1105          | 0.2083   |
| 1.6971        | 11.0  | 528  | 1.9927          | 0.2292   |
| 1.4807        | 12.0  | 576  | 2.0434          | 0.2396   |
| 1.3496        | 13.0  | 624  | 2.0579          | 0.2708   |
| 1.3694        | 14.0  | 672  | 2.0374          | 0.2708   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0