ummonk's picture
End of training
b62e234 verified
|
raw
history blame
2.65 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-accents
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.20833333333333334

distilhubert-finetuned-accents

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9825
  • Accuracy: 0.2083

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.4542 1.0 48 2.4501 0.1354
2.499 2.0 96 2.4186 0.1042
2.4441 3.0 144 2.3464 0.1875
2.1364 4.0 192 2.2214 0.2083
1.9561 5.0 240 2.1193 0.1771
2.05 6.0 288 2.0221 0.1875
1.7704 7.0 336 2.0434 0.1771
1.8652 8.0 384 1.9728 0.1875
1.77 9.0 432 1.9415 0.2292
1.6381 10.0 480 2.0323 0.1562
1.6316 11.0 528 1.9657 0.2292
1.504 12.0 576 1.9644 0.1875
1.3872 13.0 624 1.9719 0.2292
1.3829 14.0 672 1.9794 0.1979
1.3251 15.0 720 1.9825 0.2083

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0