cer_model-iii
This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2146
- Precision: 0.9186
- Recall: 0.8689
- F1: 0.8931
- Accuracy: 0.9355
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0124 | 1.0 | 4841 | 0.2169 | 0.9157 | 0.8545 | 0.8841 | 0.9272 |
0.0025 | 2.0 | 9682 | 0.2221 | 0.9180 | 0.8708 | 0.8938 | 0.9318 |
0.0001 | 3.0 | 14523 | 0.2146 | 0.9186 | 0.8689 | 0.8931 | 0.9355 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for urbija/cer_model-iii
Base model
dmis-lab/biobert-base-cased-v1.1