metadata
base_model: dmis-lab/biobert-v1.1
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: cer_model
results: []
cer_model
This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0008
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9999
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0006 | 1.0 | 71 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.9999 |
0.0007 | 2.0 | 142 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.9999 |
0.0003 | 3.0 | 213 | 0.0008 | 0.0 | 0.0 | 0.0 | 0.9999 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1