Metric fix
#2
by
dmytromishkin
- opened
- hoho/wed.py +23 -6
- requirements.txt +3 -1
- setup.py +1 -1
hoho/wed.py
CHANGED
@@ -2,9 +2,20 @@ from scipy.spatial.distance import cdist
|
|
2 |
from scipy.optimize import linear_sum_assignment
|
3 |
import numpy as np
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=1.0, ce=1.0, normalized=True, squared=False):
|
6 |
pd_vertices = np.array(pd_vertices)
|
7 |
gt_vertices = np.array(gt_vertices)
|
|
|
|
|
|
|
8 |
pd_edges = np.array(pd_edges)
|
9 |
gt_edges = np.array(gt_edges)
|
10 |
|
@@ -15,7 +26,6 @@ def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=1.0, ce=1.0, no
|
|
15 |
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
|
16 |
|
17 |
row_ind, col_ind = linear_sum_assignment(distances)
|
18 |
-
|
19 |
# Step 2: Vertex Translation
|
20 |
|
21 |
if squared:
|
@@ -32,13 +42,18 @@ def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=1.0, ce=1.0, no
|
|
32 |
insertion_costs = cv * len(unmatched_gt_indices) # Assuming a fixed cost for vertex insertion
|
33 |
|
34 |
# Step 4: Edge Deletion and Insertion
|
35 |
-
updated_pd_edges = [(
|
36 |
-
pd_edges_set = set(map(tuple, updated_pd_edges))
|
37 |
-
gt_edges_set = set(map(tuple, gt_edges))
|
|
|
38 |
|
39 |
# Delete edges not in ground truth
|
40 |
edges_to_delete = pd_edges_set - gt_edges_set
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Insert missing edges from ground truth
|
44 |
edges_to_insert = gt_edges_set - pd_edges_set
|
@@ -46,9 +61,11 @@ def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=1.0, ce=1.0, no
|
|
46 |
|
47 |
# Step 5: Calculation of WED
|
48 |
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs
|
|
|
|
|
49 |
|
50 |
if normalized:
|
51 |
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum()
|
52 |
WED = WED / total_length_of_gt_edges
|
53 |
-
|
54 |
return WED
|
|
|
2 |
from scipy.optimize import linear_sum_assignment
|
3 |
import numpy as np
|
4 |
|
5 |
+
|
6 |
+
def zeromean_normalize(vertices):
|
7 |
+
vertices = np.array(vertices)
|
8 |
+
vertices = vertices - vertices.mean(axis=0)
|
9 |
+
vertices = vertices / (1e-6 + np.linalg.norm(vertices, axis=1)[:, None])
|
10 |
+
return vertices
|
11 |
+
|
12 |
+
|
13 |
def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=1.0, ce=1.0, normalized=True, squared=False):
|
14 |
pd_vertices = np.array(pd_vertices)
|
15 |
gt_vertices = np.array(gt_vertices)
|
16 |
+
pd_vertices = zeromean_normalize(pd_vertices)
|
17 |
+
gt_vertices = zeromean_normalize(gt_vertices)
|
18 |
+
|
19 |
pd_edges = np.array(pd_edges)
|
20 |
gt_edges = np.array(gt_edges)
|
21 |
|
|
|
26 |
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
|
27 |
|
28 |
row_ind, col_ind = linear_sum_assignment(distances)
|
|
|
29 |
# Step 2: Vertex Translation
|
30 |
|
31 |
if squared:
|
|
|
42 |
insertion_costs = cv * len(unmatched_gt_indices) # Assuming a fixed cost for vertex insertion
|
43 |
|
44 |
# Step 4: Edge Deletion and Insertion
|
45 |
+
updated_pd_edges = [(col_ind[np.where(row_ind == edge[0])[0][0]], col_ind[np.where(row_ind == edge[1])[0][0]]) for edge in pd_edges if edge[0] in row_ind and edge[1] in row_ind]
|
46 |
+
pd_edges_set = set(map(tuple, [set(edge) for edge in updated_pd_edges]))
|
47 |
+
gt_edges_set = set(map(tuple, [set(edge) for edge in gt_edges]))
|
48 |
+
|
49 |
|
50 |
# Delete edges not in ground truth
|
51 |
edges_to_delete = pd_edges_set - gt_edges_set
|
52 |
+
|
53 |
+
#deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[edge[0]] - pd_vertices[edge[1]]) for edge in edges_to_delete)
|
54 |
+
vert_tf = [np.where(col_ind == v)[0][0] if v in col_ind else 0 for v in range(len(gt_vertices))]
|
55 |
+
deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[vert_tf[edge[0]]] - pd_vertices[vert_tf[edge[1]]]) for edge in edges_to_delete)
|
56 |
+
|
57 |
|
58 |
# Insert missing edges from ground truth
|
59 |
edges_to_insert = gt_edges_set - pd_edges_set
|
|
|
61 |
|
62 |
# Step 5: Calculation of WED
|
63 |
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs
|
64 |
+
print ("translation_costs, deletion_costs, insertion_costs, deletion_edge_costs, insertion_edge_costs")
|
65 |
+
print (translation_costs, deletion_costs, insertion_costs, deletion_edge_costs, insertion_edge_costs)
|
66 |
|
67 |
if normalized:
|
68 |
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum()
|
69 |
WED = WED / total_length_of_gt_edges
|
70 |
+
print ("Total length", total_length_of_gt_edges)
|
71 |
return WED
|
requirements.txt
CHANGED
@@ -3,4 +3,6 @@ pillow
|
|
3 |
webdataset
|
4 |
trimesh
|
5 |
scipy
|
6 |
-
datasets
|
|
|
|
|
|
3 |
webdataset
|
4 |
trimesh
|
5 |
scipy
|
6 |
+
datasets
|
7 |
+
pycolmap
|
8 |
+
plotly
|
setup.py
CHANGED
@@ -6,7 +6,7 @@ with open('requirements.txt') as f:
|
|
6 |
required = f.read().splitlines()
|
7 |
|
8 |
setup(name='hoho',
|
9 |
-
version='0.0.
|
10 |
description='Tools and utilites for the HoHo Dataset and S23DR Competition',
|
11 |
url='usm3d.github.io',
|
12 |
author='Jack Langerman, Dmytro Mishkin, S23DR Orgainizing Team',
|
|
|
6 |
required = f.read().splitlines()
|
7 |
|
8 |
setup(name='hoho',
|
9 |
+
version='0.0.3',
|
10 |
description='Tools and utilites for the HoHo Dataset and S23DR Competition',
|
11 |
url='usm3d.github.io',
|
12 |
author='Jack Langerman, Dmytro Mishkin, S23DR Orgainizing Team',
|