|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
datasets: |
|
- jondurbin/airoboros-2.2 |
|
- Open-Orca/OpenOrca |
|
- garage-bAInd/Open-Platypus |
|
- WizardLM/WizardLM_evol_instruct_V2_196k |
|
- TokenBender/python_eval_instruct_51k |
|
- codefuse-ai/Evol-Instruction-66k |
|
tags: |
|
- llama-2 |
|
- code |
|
license: llama2 |
|
model-index: |
|
- name: SpeechlessCoder |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: openai_humaneval |
|
name: HumanEval |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: |
|
verified: false |
|
--- |
|
|
|
<p><h1> speechless-thoughts-mistral-7b </h1></p> |
|
|
|
[code](https://github.com/uukuguy/multi_loras) |
|
|
|
speechless-thoughts-mistral-7b is fine-tuned as a baseline of the [speechless-sparsetral-16x7b-MoE](https://huggingface.co/uukuguy/speechless-sparsetral-16x7b-MoE). |
|
|
|
The specific datasets (speechless-thoughts-252k) are as follows: |
|
|
|
- jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples. |
|
- Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples. |
|
- garage-bAInd/Open-Platypus: 100%, 24,926 samples. |
|
- WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples |
|
- TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples |
|
- Spider: 8,659 samples |
|
- codefuse-ai/Evol-Instruction-66k: 100%, 66,862 samples |
|
|
|
## Alpaca Prompt Format |
|
|
|
``` |
|
### Instruction: |
|
<instruction> |
|
### Response: |
|
``` |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name_or_path="uukuguy/speechless-thoughts-mistral-7b" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=True).eval() |
|
|
|
system = ""Below is an instruction that describes a task.\nWrite a response that appropriately completes the request.\n\n"" |
|
prompt = f"{system}\n\n### Instruction:\n{instruction}\n\n### Response:" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
pred = model.generate(**inputs, max_length=4096, do_sample=True, top_k=50, top_p=0.99, temperature=0.9, num_return_sequences=1) |
|
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## HumanEval |
|
|
|
| Metric | Value | |
|
| --- | --- | |
|
| humaneval-python | | |
|
|
|
## lm-evaluation-harness |
|
|
|
```json |
|
{'ARC (acc_norm)': , |
|
'HellaSwag (acc_norm)': , |
|
'MMLU (acc)': , |
|
'TruthfulQA (mc2)': , |
|
'Winoground (acc)': , |
|
'GSM8K (acc)': , |
|
'DROP (f1)': , |
|
'Open LLM Score': } |
|
``` |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uukuguy__speechless-thoughts-mistral-7b) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 59.72 | |
|
| ARC (25-shot) | 58.96 | |
|
| HellaSwag (10-shot) | 80.71 | |
|
| MMLU (5-shot) | 60.11 | |
|
| TruthfulQA (0-shot) | 49.91 | |
|
| Winogrande (5-shot) | 77.82 | |
|
| GSM8K (5-shot) | 30.78 | |
|
|
|
|