Model description
Cased fine-tuned XLM-RoBERTa-large
model for Hungarian and English,
trained on datasets provided by the National Tax and Customs Administration - Hungary (NAV) and translated versions of the same dataset using Google Translate API.
Intended uses & limitations
The model is designed to classify sentences as either "comprehensible" or "not comprehensible" (according to Plain Language guidelines):
- Label_0 - "comprehensible" - The sentence is in Plain Language.
- Label_1 - "not comprehensible" - The sentence is not in Plain Language.
Training
Fine-tuned version of the original xlm-roberta-large
model, trained on a dataset of Hungarian legal and administrative texts. The model was also trained on the translated version of this dataset (via Google Translate API) for English classification.
Eval results
Hungarian Results:
Class | Precision | Recall | F-Score |
---|---|---|---|
Comprehensible / Label_0 | 0.82 | 0.74 | 0.78 |
Not comprehensible / Label_1 | 0.77 | 0.85 | 0.81 |
accuracy | 0.80 | ||
macro avg | 0.80 | 0.79 | 0.79 |
weighted avg | 0.80 | 0.80 | 0.79 |
English Results:
Class | Precision | Recall | F-Score |
---|---|---|---|
Comprehensible / Label_0 | 0.68 | 0.60 | 0.64 |
Not comprehensible / Label_1 | 0.66 | 0.73 | 0.69 |
accuracy | 0.67 | ||
macro avg | 0.67 | 0.67 | 0.67 |
weighted avg | 0.67 | 0.67 | 0.67 |
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("uvegesistvan/Hun_Eng_RoBERTa_large_Plain")
model = AutoModelForSequenceClassification.from_pretrained("uvegesistvan/Hun_Eng_RoBERTa_large_Plain")
BibTeX entry and citation info
If you use the model, please cite the following dissertation (to be submitted for workshop discussion):
Bibtex:
@PhDThesis{ Uveges:2024,
author = {{"U}veges, Istv{\'a}n},
title = {K{\"o}z{\'e}rthet{\"o} és automatiz{\'a}ci{\'o} - k{\'i}s{\'e}rletek a jog, term{\'e}szetesnyelv-feldolgoz{\'a}s {\'e}s informatika hat{\'a}r{\'a}n.},
year = {2024},
school = {Szegedi Tudom{\'a}nyegyetem}
}
- Downloads last month
- 0
Evaluation results
- accuracyself-reported0.80 (hu) / 0.67 (en)
- f1self-reported0.79 (hu) / 0.67 (en)