|
--- |
|
tags: |
|
- autotrain |
|
- tabular |
|
- classification |
|
- structured-data-classification |
|
datasets: |
|
- vabadeh213/autotrain-data-titanic |
|
co2_eq_emissions: 0.00509303545772981 |
|
--- |
|
|
|
https://colab.research.google.com/drive/16rmsJTBelh2vIWVxt9ncFEJmU7cEdUsE?usp=sharing |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 744222727 |
|
- CO2 Emissions (in grams): 0.00509303545772981 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.40596098709549455 |
|
- Accuracy: 0.8378378378378378 |
|
- Precision: 0.8518518518518519 |
|
- Recall: 0.92 |
|
- AUC: 0.8866666666666667 |
|
- F1: 0.8846153846153846 |
|
|
|
## Usage |
|
|
|
```python |
|
import json |
|
import joblib |
|
|
|
model = joblib.load('model.joblib') |
|
config = json.load(open('config.json')) |
|
|
|
features = config['features'] |
|
|
|
# data = pd.read_csv("data.csv") |
|
data = data[features] |
|
|
|
predictions = model.predict(data) # or model.predict_proba(data) |
|
|
|
``` |