whisper-tiny-finetuned-gtzan
This model is a fine-tuned version of openai/whisper-tiny on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5247
- Accuracy: 0.9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5599 | 1.0 | 113 | 1.3452 | 0.59 |
0.7081 | 2.0 | 226 | 0.9122 | 0.68 |
0.5877 | 3.0 | 339 | 0.5293 | 0.84 |
0.2349 | 4.0 | 452 | 0.4972 | 0.86 |
0.0454 | 5.0 | 565 | 0.5227 | 0.86 |
0.0334 | 6.0 | 678 | 0.4576 | 0.87 |
0.0089 | 7.0 | 791 | 0.5864 | 0.88 |
0.0029 | 8.0 | 904 | 0.5457 | 0.86 |
0.0023 | 9.0 | 1017 | 0.5276 | 0.88 |
0.0022 | 10.0 | 1130 | 0.5247 | 0.9 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 13
Model tree for vakanksha2002/whisper-tiny-finetuned-gtzan
Base model
openai/whisper-tiny