vapari's picture
End of training
1ebfc03 verified
|
raw
history blame
3.13 kB
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8333333333333334

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7729
  • Accuracy: 0.8333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.188 1.0 35 2.1681 0.2692
1.887 2.0 70 1.8252 0.5769
1.5321 3.0 105 1.4375 0.5385
1.0946 4.0 140 1.2295 0.6282
0.9091 5.0 175 1.0390 0.6923
0.6839 6.0 210 0.9047 0.7821
0.5769 7.0 245 0.8309 0.7308
0.4118 8.0 280 0.9522 0.6538
0.3767 9.0 315 0.8164 0.7308
0.2247 10.0 350 0.6987 0.8205
0.1392 11.0 385 0.7565 0.7692
0.0886 12.0 420 0.7082 0.8205
0.0583 13.0 455 0.7529 0.8205
0.0383 14.0 490 0.7678 0.7949
0.0345 15.0 525 0.7480 0.8333
0.0269 16.0 560 0.7542 0.8333
0.0246 17.0 595 0.7550 0.8205
0.0233 18.0 630 0.7725 0.8333
0.0225 19.0 665 0.7701 0.8333
0.0225 20.0 700 0.7729 0.8333

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0