varcoder's picture
update model card README.md
836ab15
metadata
license: other
base_model: nvidia/mit-b5
tags:
  - generated_from_trainer
model-index:
  - name: segcrack9k_conglomerate_segformer
    results: []

segcrack9k_conglomerate_segformer

This model is a fine-tuned version of nvidia/mit-b5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0333
  • Mean Iou: 0.3608
  • Mean Accuracy: 0.7217
  • Overall Accuracy: 0.7217
  • Accuracy Background: nan
  • Accuracy Crack: 0.7217
  • Iou Background: 0.0
  • Iou Crack: 0.7217

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Crack Iou Background Iou Crack
0.0259 0.14 1000 0.0404 0.3267 0.6534 0.6534 nan 0.6534 0.0 0.6534
0.0186 0.27 2000 0.0378 0.3586 0.7172 0.7172 nan 0.7172 0.0 0.7172
0.0348 0.41 3000 0.0375 0.3209 0.6418 0.6418 nan 0.6418 0.0 0.6418
0.011 0.54 4000 0.0356 0.3496 0.6991 0.6991 nan 0.6991 0.0 0.6991
0.0132 0.68 5000 0.0350 0.3459 0.6918 0.6918 nan 0.6918 0.0 0.6918
0.0573 0.81 6000 0.0339 0.3575 0.7149 0.7149 nan 0.7149 0.0 0.7149
0.1466 0.95 7000 0.0333 0.3608 0.7217 0.7217 nan 0.7217 0.0 0.7217

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3