updates model
Browse files- README.md +6 -9
- config.json +1 -1
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -25,10 +25,10 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Test WER
|
27 |
type: wer
|
28 |
-
value:
|
29 |
- name: Test CER
|
30 |
type: cer
|
31 |
-
value:
|
32 |
---
|
33 |
|
34 |
# Wav2Vec2-Large-XLSR-53-finnish
|
@@ -88,8 +88,8 @@ import re
|
|
88 |
test_dataset = load_dataset("common_voice", "fi", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
|
89 |
wer = load_metric("wer")
|
90 |
|
91 |
-
processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish")
|
92 |
-
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish")
|
93 |
model.to("cuda")
|
94 |
|
95 |
chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']" # TODO: adapt this list to include all special characters you removed from the data
|
@@ -134,15 +134,12 @@ print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) f
|
|
134 |
|
135 |
```
|
136 |
|
137 |
-
**Test Result**:
|
138 |
|
139 |
|
140 |
## Training
|
141 |
|
142 |
|
143 |
The Common Voice train dataset was used for training. Also all of `CSS10 Finnish` was used using the normalized transcripts.
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
|
|
|
25 |
metrics:
|
26 |
- name: Test WER
|
27 |
type: wer
|
28 |
+
value: 38.335242
|
29 |
- name: Test CER
|
30 |
type: cer
|
31 |
+
value: 6.552408
|
32 |
---
|
33 |
|
34 |
# Wav2Vec2-Large-XLSR-53-finnish
|
|
|
88 |
test_dataset = load_dataset("common_voice", "fi", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
|
89 |
wer = load_metric("wer")
|
90 |
|
91 |
+
processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish")
|
92 |
+
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish")
|
93 |
model.to("cuda")
|
94 |
|
95 |
chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']" # TODO: adapt this list to include all special characters you removed from the data
|
|
|
134 |
|
135 |
```
|
136 |
|
137 |
+
**Test Result**: 38.335242 %
|
138 |
|
139 |
|
140 |
## Training
|
141 |
|
142 |
|
143 |
The Common Voice train dataset was used for training. Also all of `CSS10 Finnish` was used using the normalized transcripts.
|
144 |
+
After 20000 steps the models was finetuned using the common voice train and validation sets for 2000 steps more.
|
|
|
|
|
|
|
145 |
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_dropout": 0.0,
|
4 |
"apply_spec_augment": true,
|
5 |
"architectures": [
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/speech-data-1/dev/hugging_face_finetuning_week/fi_demo/checkpoints/2020_27_3_v4/checkpoint-15200",
|
3 |
"activation_dropout": 0.0,
|
4 |
"apply_spec_augment": true,
|
5 |
"architectures": [
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262056855
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10069dd469767be123bf30757be12a8d249b99394d8475bd44cb4c671d367131
|
3 |
size 1262056855
|