Edit model card

test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5474
  • Precision: 0.8890
  • Recall: 0.9071
  • F1: 0.8980
  • Accuracy: 0.8665

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.33 100 0.5976 0.7412 0.8296 0.7829 0.8001
No log 2.67 200 0.5019 0.8259 0.8698 0.8473 0.8269
No log 4.0 300 0.4829 0.8701 0.8982 0.8839 0.8540
No log 5.33 400 0.4490 0.8829 0.9141 0.8982 0.8725
0.5303 6.67 500 0.5120 0.8721 0.9046 0.8881 0.8574
0.5303 8.0 600 0.5212 0.8802 0.9011 0.8905 0.8644
0.5303 9.33 700 0.5447 0.8918 0.9086 0.9001 0.8559
0.5303 10.67 800 0.5304 0.8875 0.9056 0.8965 0.8713
0.5303 12.0 900 0.5496 0.8878 0.9081 0.8978 0.8630
0.1291 13.33 1000 0.5474 0.8890 0.9071 0.8980 0.8665

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vcliang/test

Finetuned
(213)
this model

Evaluation results