YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
git lfs install
git clone https://huggingface.co/veb/twitch-bert-base-cased-sentiment-pytorch
import transformers
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup, BertForSequenceClassification
import torch
import numpy as np
import pandas as pd
import seaborn as sns
from pylab import rcParams
import matplotlib.pyplot as plt
from matplotlib import rc
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from collections import defaultdict
from textwrap import wrap
import tensorflow as tf
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
PRE_TRAINED_MODEL_NAME = "veb/twitch-bert-base-cased-pytorch" #'models/veb/twitch-bert-base-cased-finetuned'
MAX_LEN = 160
tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
class SentimentClassifier(nn.Module):
def __init__(self, n_classes):
super(SentimentClassifier, self).__init__()
self.bert = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME, return_dict=False) #If you are using the
#Hugging Face transformers library, this error pops up when running code
# written in v3 on the transformers v4 library.
# To resolve it, simply add return_dict=False when loading the model
# https://stackoverflow.com/questions/65082243/dropout-argument-input-position-1-must-be-tensor-not-str-when-using-bert
self.drop = nn.Dropout(p=0.3)
self.out = nn.Linear(self.bert.config.hidden_size, n_classes)
def forward(self, input_ids, attention_mask):
_, pooled_output = self.bert(
input_ids=input_ids,
attention_mask=attention_mask
)
output = self.drop(pooled_output)
return self.out(output)
model = SentimentClassifier(len(class_names))
model.load_state_dict(torch.load('best_model_state.bin'))
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.