Edit model card

vedantjumle/bert-2

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 4.4459
  • Validation Loss: 4.3669
  • Train Accuracy: 0.0233
  • Epoch: 25

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
5.1229 5.0343 0.0067 0
5.0629 5.0547 0.0033 1
5.0585 5.0239 0.0167 2
5.0530 5.0257 0.0167 3
5.0545 5.0207 0.01 4
5.0549 5.0104 0.01 5
5.0401 5.0240 0.0067 6
5.0400 5.0121 0.01 7
5.0372 5.0030 0.0167 8
5.0326 5.0256 0.0067 9
5.0382 4.9992 0.01 10
5.0144 4.9976 0.01 11
5.0152 4.9783 0.0167 12
4.9700 4.9433 0.0067 13
4.9206 4.9482 0.0067 14
4.9153 4.8727 0.0067 15
4.9287 4.7980 0.0167 16
4.8014 4.7452 0.0167 17
4.7477 4.6429 0.01 18
4.6939 4.6035 0.02 19
4.6607 4.5406 0.02 20
4.6075 4.5490 0.0167 21
4.5748 4.5086 0.0333 22
4.5383 4.3940 0.0333 23
4.4965 4.3748 0.0233 24
4.4459 4.3669 0.0233 25

Framework versions

  • Transformers 4.34.0
  • TensorFlow 2.13.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vedantjumle/bert-2

Finetuned
(105)
this model