victomoe's picture
Push model using huggingface_hub.
b043580 verified
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: I'd like to go up one floor
  - text: I’d like to go to floor 2.
  - text: Which office is Yngvar located in?
  - text: Yes, proceed.
  - text: Absolutely.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
RequestMoveToFloor
  • 'Please go to the 3rd floor.'
  • 'Can you take me to floor 5?'
  • 'I need to go to the 8th floor.'
RequestMoveToFloorByX
  • 'Go one floor up'
  • 'Take me up two floors'
  • 'Move me down one level'
Confirm
  • "Yes, that's right."
  • 'Sure.'
  • 'Exactly.'
RequestEmployeeLocation
  • 'Where is Erik Velldal’s office?'
  • 'Which floor is Andreas Austeng on?'
  • 'Can you tell me where Birthe Soppe’s office is?'
CurrentFloor
  • 'Which floor are we on?'
  • 'What floor is this?'
  • 'Are we on the 5th floor?'
Stop
  • 'Stop the elevator.'
  • "Wait, don't go to that floor."
  • 'No, not that floor.'
OutOfCoverage
  • "What's the capital of France?"
  • 'How many floors does this building have?'
  • 'Can you make a phone call for me?'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("victomoe/setfit-intent-classifier-2")
# Run inference
preds = model("Absolutely.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 5.1533 9
Label Training Sample Count
Confirm 22
CurrentFloor 21
OutOfCoverage 22
RequestEmployeeLocation 22
RequestMoveToFloor 23
RequestMoveToFloorByX 20
Stop 20

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0017 1 0.1415 -
0.0829 50 0.1863 -
0.1658 100 0.1559 -
0.2488 150 0.0966 -
0.3317 200 0.0363 -
0.4146 250 0.009 -
0.4975 300 0.0035 -
0.5804 350 0.0024 -
0.6633 400 0.0017 -
0.7463 450 0.0015 -
0.8292 500 0.0011 -
0.9121 550 0.0009 -
0.9950 600 0.0008 -
1.0779 650 0.0007 -
1.1609 700 0.0006 -
1.2438 750 0.0005 -
1.3267 800 0.0005 -
1.4096 850 0.0005 -
1.4925 900 0.0007 -
1.5755 950 0.0004 -
1.6584 1000 0.0004 -
1.7413 1050 0.0004 -
1.8242 1100 0.0004 -
1.9071 1150 0.0003 -
1.9900 1200 0.0003 -
2.0730 1250 0.0003 -
2.1559 1300 0.0003 -
2.2388 1350 0.0003 -
2.3217 1400 0.0003 -
2.4046 1450 0.0003 -
2.4876 1500 0.0003 -
2.5705 1550 0.0002 -
2.6534 1600 0.0002 -
2.7363 1650 0.0004 -
2.8192 1700 0.0002 -
2.9022 1750 0.0002 -
2.9851 1800 0.0002 -
3.0680 1850 0.0002 -
3.1509 1900 0.0002 -
3.2338 1950 0.0002 -
3.3167 2000 0.0002 -
3.3997 2050 0.0002 -
3.4826 2100 0.0002 -
3.5655 2150 0.0002 -
3.6484 2200 0.0002 -
3.7313 2250 0.0002 -
3.8143 2300 0.0002 -
3.8972 2350 0.0002 -
3.9801 2400 0.0002 -
4.0630 2450 0.0002 -
4.1459 2500 0.0002 -
4.2289 2550 0.0002 -
4.3118 2600 0.0002 -
4.3947 2650 0.0002 -
4.4776 2700 0.0002 -
4.5605 2750 0.0002 -
4.6434 2800 0.0001 -
4.7264 2850 0.0001 -
4.8093 2900 0.0001 -
4.8922 2950 0.0001 -
4.9751 3000 0.0001 -
5.0580 3050 0.0001 -
5.1410 3100 0.0001 -
5.2239 3150 0.0001 -
5.3068 3200 0.0001 -
5.3897 3250 0.0001 -
5.4726 3300 0.0001 -
5.5556 3350 0.0003 -
5.6385 3400 0.0004 -
5.7214 3450 0.0001 -
5.8043 3500 0.0001 -
5.8872 3550 0.0001 -
5.9701 3600 0.0001 -
6.0531 3650 0.0001 -
6.1360 3700 0.0001 -
6.2189 3750 0.0001 -
6.3018 3800 0.0001 -
6.3847 3850 0.0001 -
6.4677 3900 0.0001 -
6.5506 3950 0.0001 -
6.6335 4000 0.0001 -
6.7164 4050 0.0001 -
6.7993 4100 0.0001 -
6.8823 4150 0.0001 -
6.9652 4200 0.0001 -
7.0481 4250 0.0001 -
7.1310 4300 0.0001 -
7.2139 4350 0.0001 -
7.2968 4400 0.0001 -
7.3798 4450 0.0001 -
7.4627 4500 0.0001 -
7.5456 4550 0.0001 -
7.6285 4600 0.0001 -
7.7114 4650 0.0001 -
7.7944 4700 0.0001 -
7.8773 4750 0.0001 -
7.9602 4800 0.0001 -
8.0431 4850 0.0001 -
8.1260 4900 0.0001 -
8.2090 4950 0.0001 -
8.2919 5000 0.0001 -
8.3748 5050 0.0001 -
8.4577 5100 0.0001 -
8.5406 5150 0.0001 -
8.6235 5200 0.0001 -
8.7065 5250 0.0001 -
8.7894 5300 0.0001 -
8.8723 5350 0.0001 -
8.9552 5400 0.0001 -
9.0381 5450 0.0001 -
9.1211 5500 0.0001 -
9.2040 5550 0.0001 -
9.2869 5600 0.0001 -
9.3698 5650 0.0001 -
9.4527 5700 0.0001 -
9.5357 5750 0.0001 -
9.6186 5800 0.0001 -
9.7015 5850 0.0001 -
9.7844 5900 0.0001 -
9.8673 5950 0.0001 -
9.9502 6000 0.0001 -

Framework Versions

  • Python: 3.10.8
  • SetFit: 1.1.0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.38.2
  • PyTorch: 2.1.2
  • Datasets: 2.17.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}