ColPali
Safetensors
English
vidore
vidore-experimental
manu commited on
Commit
948dbb8
1 Parent(s): d6f6a16

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -161
README.md CHANGED
@@ -1,205 +1,137 @@
1
  ---
 
 
2
  base_model: vidore/colpaligemma-3b-pt-448-base
3
- library_name: peft
 
4
  tags:
5
- - vidore-experimental
6
  - vidore
 
 
 
7
  ---
8
 
9
- # Model Card for Model ID
10
-
11
- <!-- Provide a quick summary of what the model is/does. -->
12
-
13
-
14
-
15
- ## Model Details
16
-
17
- ### Model Description
18
-
19
- <!-- Provide a longer summary of what this model is. -->
20
-
21
-
22
-
23
- - **Developed by:** [More Information Needed]
24
- - **Funded by [optional]:** [More Information Needed]
25
- - **Shared by [optional]:** [More Information Needed]
26
- - **Model type:** [More Information Needed]
27
- - **Language(s) (NLP):** [More Information Needed]
28
- - **License:** [More Information Needed]
29
- - **Finetuned from model [optional]:** [More Information Needed]
30
-
31
- ### Model Sources [optional]
32
-
33
- <!-- Provide the basic links for the model. -->
34
-
35
- - **Repository:** [More Information Needed]
36
- - **Paper [optional]:** [More Information Needed]
37
- - **Demo [optional]:** [More Information Needed]
38
-
39
- ## Uses
40
-
41
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
-
43
- ### Direct Use
44
-
45
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
46
-
47
- [More Information Needed]
48
-
49
- ### Downstream Use [optional]
50
-
51
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
52
-
53
- [More Information Needed]
54
-
55
- ### Out-of-Scope Use
56
-
57
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
58
-
59
- [More Information Needed]
60
-
61
- ## Bias, Risks, and Limitations
62
-
63
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
64
-
65
- [More Information Needed]
66
-
67
- ### Recommendations
68
-
69
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
70
-
71
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
-
73
- ## How to Get Started with the Model
74
-
75
- Use the code below to get started with the model.
76
-
77
- [More Information Needed]
78
-
79
- ## Training Details
80
-
81
- ### Training Data
82
-
83
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
84
-
85
- [More Information Needed]
86
-
87
- ### Training Procedure
88
-
89
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
90
-
91
- #### Preprocessing [optional]
92
-
93
- [More Information Needed]
94
-
95
-
96
- #### Training Hyperparameters
97
-
98
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
99
-
100
- #### Speeds, Sizes, Times [optional]
101
-
102
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
103
-
104
- [More Information Needed]
105
-
106
- ## Evaluation
107
-
108
- <!-- This section describes the evaluation protocols and provides the results. -->
109
-
110
- ### Testing Data, Factors & Metrics
111
-
112
- #### Testing Data
113
-
114
- <!-- This should link to a Dataset Card if possible. -->
115
-
116
- [More Information Needed]
117
-
118
- #### Factors
119
-
120
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
121
-
122
- [More Information Needed]
123
-
124
- #### Metrics
125
-
126
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
127
 
128
- [More Information Needed]
129
 
130
- ### Results
 
 
131
 
132
- [More Information Needed]
133
 
134
- #### Summary
135
 
 
136
 
 
 
 
137
 
138
- ## Model Examination [optional]
139
 
140
- <!-- Relevant interpretability work for the model goes here -->
141
 
142
- [More Information Needed]
 
143
 
144
- ## Environmental Impact
 
145
 
146
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
147
 
148
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
149
 
150
- - **Hardware Type:** [More Information Needed]
151
- - **Hours used:** [More Information Needed]
152
- - **Cloud Provider:** [More Information Needed]
153
- - **Compute Region:** [More Information Needed]
154
- - **Carbon Emitted:** [More Information Needed]
155
 
156
- ## Technical Specifications [optional]
157
 
158
- ### Model Architecture and Objective
 
 
 
159
 
160
- [More Information Needed]
161
 
162
- ### Compute Infrastructure
163
 
164
- [More Information Needed]
 
 
165
 
166
- #### Hardware
167
 
168
- [More Information Needed]
 
169
 
170
- #### Software
 
171
 
172
- [More Information Needed]
173
 
174
- ## Citation [optional]
175
 
176
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
177
 
178
- **BibTeX:**
179
 
180
- [More Information Needed]
 
 
 
 
 
 
 
 
181
 
182
- **APA:**
 
 
183
 
184
- [More Information Needed]
 
 
 
185
 
186
- ## Glossary [optional]
 
187
 
188
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
189
 
190
- [More Information Needed]
 
191
 
192
- ## More Information [optional]
193
 
194
- [More Information Needed]
195
 
196
- ## Model Card Authors [optional]
197
 
198
- [More Information Needed]
 
 
199
 
200
- ## Model Card Contact
201
 
202
- [More Information Needed]
203
- ### Framework versions
204
 
205
- - PEFT 0.11.1
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: colpali
4
  base_model: vidore/colpaligemma-3b-pt-448-base
5
+ language:
6
+ - en
7
  tags:
 
8
  - vidore
9
+ - vidore-experimental
10
+ datasets:
11
+ - vidore/colpali_train_set
12
  ---
13
 
14
+ # ColPali: Visual Retriever based on PaliGemma-3B with ColBERT strategy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ ## This version is trained with 256 batch size for 3 epochs on the same data as the original ColPali model.
17
 
18
+ ColPali is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
19
+ It is a [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
20
+ It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
21
 
22
+ <p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
23
 
24
+ ## Version specificity
25
 
26
+ This version is trained with `colpali-engine==0.2.0` but can be loaded for any version `>=0.2.0`.
27
 
28
+ Compared to [`vidore/colpali`](https://huggingface.co/vidore/colpali), this version is trained with right padding for queries to fix unwanted tokens in the query encoding.
29
+ It also stems from the fixed `vidore/colpaligemma-3b-pt-448-base` to guarantee deterministic projection layer initialization.
30
+ It was trained for 5 epochs, with in-batch negatives and hard mined negatives and a warmup of 1000 steps (10x longer) to help reduce non-english language collapse.
31
 
32
+ Data is the same as the ColPali data described in the paper.
33
 
34
+ ## Model Description
35
 
36
+ This model is built iteratively starting from an off-the-shelf [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) model.
37
+ We finetuned it to create [BiSigLIP](https://huggingface.co/vidore/bisiglip) and fed the patch-embeddings output by SigLIP to an LLM, [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) to create [BiPali](https://huggingface.co/vidore/bipali).
38
 
39
+ One benefit of inputting image patch embeddings through a language model is that they are natively mapped to a latent space similar to textual input (query).
40
+ This enables leveraging the [ColBERT](https://arxiv.org/abs/2004.12832) strategy to compute interactions between text tokens and image patches, which enables a step-change improvement in performance compared to BiPali.
41
 
42
+ ## Model Training
43
 
44
+ ### Dataset
45
+ Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%).
46
+ Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination.
47
+ A validation set is created with 2% of the samples to tune hyperparameters.
48
 
49
+ *Note: Multilingual data is present in the pretraining corpus of the language model (Gemma-2B) and potentially occurs during PaliGemma-3B's multimodal training.*
 
 
 
 
50
 
51
+ ### Parameters
52
 
53
+ All models are trained for 1 epoch on the train set. Unless specified otherwise, we train models in `bfloat16` format, use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
54
+ with `alpha=32` and `r=32` on the transformer layers from the language model,
55
+ as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
56
+ We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32.
57
 
58
+ ## Usage
59
 
60
+ Install [`colpali-engine`](https://github.com/illuin-tech/colpali):
61
 
62
+ ```bash
63
+ pip install colpali-engine>=0.3.0,<0.4.0
64
+ ```
65
 
66
+ Then run the following code:
67
 
68
+ ```python
69
+ from typing import cast
70
 
71
+ import torch
72
+ from PIL import Image
73
 
74
+ from colpali_engine.models import ColPali, ColPaliProcessor
75
 
76
+ model_name = "vidore/colpali-v1.3"
77
 
78
+ model = ColPali.from_pretrained(
79
+ model_name,
80
+ torch_dtype=torch.bfloat16,
81
+ device_map="cuda:0", # or "mps" if on Apple Silicon
82
+ ).eval()
83
 
84
+ processor = ColPaliProcessor.from_pretrained(model_name)
85
 
86
+ # Your inputs
87
+ images = [
88
+ Image.new("RGB", (32, 32), color="white"),
89
+ Image.new("RGB", (16, 16), color="black"),
90
+ ]
91
+ queries = [
92
+ "Is attention really all you need?",
93
+ "Are Benjamin, Antoine, Merve, and Jo best friends?",
94
+ ]
95
 
96
+ # Process the inputs
97
+ batch_images = processor.process_images(images).to(model.device)
98
+ batch_queries = processor.process_queries(queries).to(model.device)
99
 
100
+ # Forward pass
101
+ with torch.no_grad():
102
+ image_embeddings = model(**batch_images)
103
+ querry_embeddings = model(**batch_queries)
104
 
105
+ scores = processor.score_multi_vector(querry_embeddings, image_embeddings)
106
+ ```
107
 
108
+ ## Limitations
109
 
110
+ - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
111
+ - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
112
 
113
+ ## License
114
 
115
+ ColPali's vision language backbone model (PaliGemma) is under `gemma` license as specified in its [model card](https://huggingface.co/google/paligemma-3b-mix-448). The adapters attached to the model are under MIT license.
116
 
117
+ ## Contact
118
 
119
+ - Manuel Faysse: manuel.faysse@illuin.tech
120
+ - Hugues Sibille: hugues.sibille@illuin.tech
121
+ - Tony Wu: tony.wu@illuin.tech
122
 
123
+ ## Citation
124
 
125
+ If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
 
126
 
127
+ ```bibtex
128
+ @misc{faysse2024colpaliefficientdocumentretrieval,
129
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
130
+ author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
131
+ year={2024},
132
+ eprint={2407.01449},
133
+ archivePrefix={arXiv},
134
+ primaryClass={cs.IR},
135
+ url={https://arxiv.org/abs/2407.01449},
136
+ }
137
+ ```