librarian-bot's picture
Librarian Bot: Add base_model information to model
2ef4dcb
|
raw
history blame
2.28 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - few_nerd
metrics:
  - precision
  - recall
  - f1
  - accuracy
pipeline_tag: token-classification
base_model: distilbert-base-uncased
model-index:
  - name: distilbert-base-uncased-finetuned-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: few_nerd
          type: few_nerd
          args: supervised
        metrics:
          - type: precision
            value: 0.6424480067658478
            name: Precision
          - type: recall
            value: 0.6854236732015421
            name: Recall
          - type: f1
            value: 0.6632404008334158
            name: F1
          - type: accuracy
            value: 0.9075199647113962
            name: Accuracy

distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on the few_nerd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3136
  • Precision: 0.6424
  • Recall: 0.6854
  • F1: 0.6632
  • Accuracy: 0.9075

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.328 1.0 8236 0.3197 0.6274 0.6720 0.6489 0.9041
0.2776 2.0 16472 0.3111 0.6433 0.6759 0.6592 0.9069
0.241 3.0 24708 0.3136 0.6424 0.6854 0.6632 0.9075

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1