Edit model card

SetFit with sentence-transformers/all-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2
  • '840989 otp proceed canara bank mobile banking . valid 15 minute . share otp . - canara bank . kbl8a1ju0mt'
  • 'cheque . 000102 issue riya collection rs . 12,000.00 present / c xxxxx546157 return unpaid insufficient fund . team idfc bank'
  • 'avl bal / c xxxx0959 10 - jul-2022 06:06:24 inr 0.00 . combine avl bal inr 0.00 . use mb app track / c - kotak bank'
0
  • '/ c . xxxxxxxx7146 debit rs.11933.00 16 - 09 - 23 / c xxxxxxxx4716 credit ( imp ref 325908759095 ) . warm regard , yes bank'
  • 'send rs.290.00 kotak bank ac x4524 bharatpe90727843812@yesbankltd 13-10-23.upi ref 328684167136 . , kotak.com/fraud'
  • 'rs.295 transfer / c ... 4322 : lien_marking_fo . total bal : rs.188.8cr . avlbl amt : rs.609.97(28 - 06 - 2022 16:39:53 ) - bank baroda'
1
  • 'rs 15000credite / c xx4524via neft neofirst technology india private- utr ref hsbcn23276508097 ; avail . bal.:rs 215180.62kotak bank'
  • '/ c : xx6775 credit rs.60.00 14 - 11 - 2023 10:47:49 upi - id 8733076955@omni ( upi ref 331800008439).-canara bank'
  • 'rs.28 credit / c ... 7783 upi/323962847509 kiwicashback_ax . total bal : rs.122751.36cr . avlbl amt : rs.94671.36(27 - 08 - 2023 15:37:01 ) - bank baroda'

Evaluation

Metrics

Label Accuracy
all 0.9716

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vipinbansal179/SetFit_sms_Analyzer1")
# Run inference
preds = model("472448 otp set hdfc bank 4 digit login pin . share otp you?call 18002586161")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 23.17 65
Label Training Sample Count
0 231
1 131
2 338

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0001 1 0.2945 -
0.0026 50 0.3574 -
0.0052 100 0.2512 -
0.0079 150 0.2319 -
0.0105 200 0.2787 -
0.0131 250 0.2129 -
0.0157 300 0.2189 -
0.0183 350 0.0857 -
0.0210 400 0.0932 -
0.0236 450 0.065 -
0.0262 500 0.0553 -
0.0288 550 0.0674 -
0.0314 600 0.0239 -
0.0341 650 0.0054 -
0.0367 700 0.0025 -
0.0393 750 0.002 -
0.0419 800 0.0007 -
0.0446 850 0.001 -
0.0472 900 0.0008 -
0.0498 950 0.0008 -
0.0524 1000 0.0003 -
0.0550 1050 0.0012 -
0.0577 1100 0.002 -
0.0603 1150 0.0192 -
0.0629 1200 0.0041 -
0.0655 1250 0.0002 -
0.0681 1300 0.0001 -
0.0708 1350 0.0001 -
0.0734 1400 0.0001 -
0.0760 1450 0.0004 -
0.0786 1500 0.0003 -
0.0812 1550 0.0002 -
0.0839 1600 0.0004 -
0.0865 1650 0.0002 -
0.0891 1700 0.0002 -
0.0917 1750 0.0001 -
0.0943 1800 0.0001 -
0.0970 1850 0.0001 -
0.0996 1900 0.0001 -
0.1022 1950 0.0001 -
0.1048 2000 0.0001 -
0.1075 2050 0.0015 -
0.1101 2100 0.0001 -
0.1127 2150 0.0001 -
0.1153 2200 0.0001 -
0.1179 2250 0.0001 -
0.1206 2300 0.0 -
0.1232 2350 0.0001 -
0.1258 2400 0.0 -
0.1284 2450 0.0001 -
0.1310 2500 0.0 -
0.1337 2550 0.0001 -
0.1363 2600 0.0 -
0.1389 2650 0.0001 -
0.1415 2700 0.0 -
0.1441 2750 0.0 -
0.1468 2800 0.0 -
0.1494 2850 0.0 -
0.1520 2900 0.0 -
0.1546 2950 0.0 -
0.1572 3000 0.0 -
0.1599 3050 0.0 -
0.1625 3100 0.0 -
0.1651 3150 0.0 -
0.1677 3200 0.0 -
0.1704 3250 0.0 -
0.1730 3300 0.0 -
0.1756 3350 0.0 -
0.1782 3400 0.0 -
0.1808 3450 0.0 -
0.1835 3500 0.0 -
0.1861 3550 0.0003 -
0.1887 3600 0.0131 -
0.1913 3650 0.0004 -
0.1939 3700 0.0001 -
0.1966 3750 0.0 -
0.1992 3800 0.0001 -
0.2018 3850 0.0002 -
0.2044 3900 0.0 -
0.2070 3950 0.0 -
0.2097 4000 0.0001 -
0.2123 4050 0.0015 -
0.2149 4100 0.0002 -
0.2175 4150 0.0 -
0.2201 4200 0.0 -
0.2228 4250 0.0 -
0.2254 4300 0.0 -
0.2280 4350 0.0 -
0.2306 4400 0.0 -
0.2333 4450 0.0 -
0.2359 4500 0.0 -
0.2385 4550 0.0 -
0.2411 4600 0.0 -
0.2437 4650 0.0 -
0.2464 4700 0.0 -
0.2490 4750 0.0 -
0.2516 4800 0.0 -
0.2542 4850 0.0 -
0.2568 4900 0.0 -
0.2595 4950 0.0 -
0.2621 5000 0.0 -
0.2647 5050 0.0 -
0.2673 5100 0.0 -
0.2699 5150 0.0 -
0.2726 5200 0.0 -
0.2752 5250 0.0 -
0.2778 5300 0.0 -
0.2804 5350 0.0 -
0.2830 5400 0.0 -
0.2857 5450 0.0 -
0.2883 5500 0.0 -
0.2909 5550 0.0 -
0.2935 5600 0.0 -
0.2962 5650 0.0 -
0.2988 5700 0.0 -
0.3014 5750 0.0 -
0.3040 5800 0.0 -
0.3066 5850 0.0 -
0.3093 5900 0.0 -
0.3119 5950 0.0 -
0.3145 6000 0.0 -
0.3171 6050 0.0 -
0.3197 6100 0.0 -
0.3224 6150 0.0 -
0.3250 6200 0.0 -
0.3276 6250 0.0 -
0.3302 6300 0.0 -
0.3328 6350 0.0 -
0.3355 6400 0.0 -
0.3381 6450 0.0 -
0.3407 6500 0.0 -
0.3433 6550 0.0 -
0.3459 6600 0.0 -
0.3486 6650 0.0 -
0.3512 6700 0.0 -
0.3538 6750 0.0 -
0.3564 6800 0.0 -
0.3591 6850 0.0 -
0.3617 6900 0.0 -
0.3643 6950 0.0 -
0.3669 7000 0.0 -
0.3695 7050 0.0 -
0.3722 7100 0.0 -
0.3748 7150 0.0 -
0.3774 7200 0.0 -
0.3800 7250 0.0 -
0.3826 7300 0.0 -
0.3853 7350 0.0 -
0.3879 7400 0.0 -
0.3905 7450 0.0 -
0.3931 7500 0.0 -
0.3957 7550 0.0 -
0.3984 7600 0.0 -
0.4010 7650 0.0 -
0.4036 7700 0.0 -
0.4062 7750 0.0 -
0.4088 7800 0.0 -
0.4115 7850 0.0 -
0.4141 7900 0.0 -
0.4167 7950 0.0 -
0.4193 8000 0.0 -
0.4220 8050 0.0 -
0.4246 8100 0.0 -
0.4272 8150 0.0 -
0.4298 8200 0.0 -
0.4324 8250 0.0 -
0.4351 8300 0.0 -
0.4377 8350 0.0 -
0.4403 8400 0.0 -
0.4429 8450 0.0 -
0.4455 8500 0.0 -
0.4482 8550 0.0 -
0.4508 8600 0.0 -
0.4534 8650 0.0 -
0.4560 8700 0.0 -
0.4586 8750 0.0 -
0.4613 8800 0.0 -
0.4639 8850 0.0 -
0.4665 8900 0.0 -
0.4691 8950 0.0001 -
0.4717 9000 0.0 -
0.4744 9050 0.0 -
0.4770 9100 0.0 -
0.4796 9150 0.0 -
0.4822 9200 0.0 -
0.4849 9250 0.0 -
0.4875 9300 0.0 -
0.4901 9350 0.0 -
0.4927 9400 0.0 -
0.4953 9450 0.0 -
0.4980 9500 0.0 -
0.5006 9550 0.0 -
0.5032 9600 0.0 -
0.5058 9650 0.0 -
0.5084 9700 0.0 -
0.5111 9750 0.0 -
0.5137 9800 0.0 -
0.5163 9850 0.0 -
0.5189 9900 0.0 -
0.5215 9950 0.0 -
0.5242 10000 0.0 -
0.5268 10050 0.0 -
0.5294 10100 0.0 -
0.5320 10150 0.0 -
0.5346 10200 0.0 -
0.5373 10250 0.0 -
0.5399 10300 0.0 -
0.5425 10350 0.0 -
0.5451 10400 0.0 -
0.5478 10450 0.0 -
0.5504 10500 0.0 -
0.5530 10550 0.0 -
0.5556 10600 0.0 -
0.5582 10650 0.0 -
0.5609 10700 0.0 -
0.5635 10750 0.0 -
0.5661 10800 0.0 -
0.5687 10850 0.0 -
0.5713 10900 0.0 -
0.5740 10950 0.0 -
0.5766 11000 0.0 -
0.5792 11050 0.0 -
0.5818 11100 0.0 -
0.5844 11150 0.0 -
0.5871 11200 0.0 -
0.5897 11250 0.0 -
0.5923 11300 0.0 -
0.5949 11350 0.0 -
0.5975 11400 0.0 -
0.6002 11450 0.0 -
0.6028 11500 0.0 -
0.6054 11550 0.0 -
0.6080 11600 0.0 -
0.6107 11650 0.0 -
0.6133 11700 0.0 -
0.6159 11750 0.0 -
0.6185 11800 0.0 -
0.6211 11850 0.0 -
0.6238 11900 0.0 -
0.6264 11950 0.0 -
0.6290 12000 0.0 -
0.6316 12050 0.0 -
0.6342 12100 0.0 -
0.6369 12150 0.0 -
0.6395 12200 0.0 -
0.6421 12250 0.0 -
0.6447 12300 0.0 -
0.6473 12350 0.0 -
0.6500 12400 0.0 -
0.6526 12450 0.0 -
0.6552 12500 0.0 -
0.6578 12550 0.0 -
0.6604 12600 0.0 -
0.6631 12650 0.0 -
0.6657 12700 0.0 -
0.6683 12750 0.0 -
0.6709 12800 0.0 -
0.6736 12850 0.0 -
0.6762 12900 0.0 -
0.6788 12950 0.0 -
0.6814 13000 0.0 -
0.6840 13050 0.0 -
0.6867 13100 0.0 -
0.6893 13150 0.0 -
0.6919 13200 0.0 -
0.6945 13250 0.0 -
0.6971 13300 0.0 -
0.6998 13350 0.0 -
0.7024 13400 0.0 -
0.7050 13450 0.0 -
0.7076 13500 0.0 -
0.7102 13550 0.0 -
0.7129 13600 0.0 -
0.7155 13650 0.0 -
0.7181 13700 0.0 -
0.7207 13750 0.0 -
0.7233 13800 0.0 -
0.7260 13850 0.0 -
0.7286 13900 0.0 -
0.7312 13950 0.0 -
0.7338 14000 0.0 -
0.7365 14050 0.0 -
0.7391 14100 0.0 -
0.7417 14150 0.0 -
0.7443 14200 0.0 -
0.7469 14250 0.0 -
0.7496 14300 0.0 -
0.7522 14350 0.0 -
0.7548 14400 0.0 -
0.7574 14450 0.0 -
0.7600 14500 0.0 -
0.7627 14550 0.0 -
0.7653 14600 0.0 -
0.7679 14650 0.0 -
0.7705 14700 0.0 -
0.7731 14750 0.0 -
0.7758 14800 0.0 -
0.7784 14850 0.0 -
0.7810 14900 0.0 -
0.7836 14950 0.0 -
0.7862 15000 0.0 -
0.7889 15050 0.0 -
0.7915 15100 0.0 -
0.7941 15150 0.0 -
0.7967 15200 0.0 -
0.7994 15250 0.0 -
0.8020 15300 0.0 -
0.8046 15350 0.0 -
0.8072 15400 0.0 -
0.8098 15450 0.0 -
0.8125 15500 0.0 -
0.8151 15550 0.0 -
0.8177 15600 0.0 -
0.8203 15650 0.0 -
0.8229 15700 0.0 -
0.8256 15750 0.0 -
0.8282 15800 0.0 -
0.8308 15850 0.0 -
0.8334 15900 0.0 -
0.8360 15950 0.0 -
0.8387 16000 0.0 -
0.8413 16050 0.0 -
0.8439 16100 0.0 -
0.8465 16150 0.0 -
0.8491 16200 0.0 -
0.8518 16250 0.0 -
0.8544 16300 0.0 -
0.8570 16350 0.0 -
0.8596 16400 0.0 -
0.8622 16450 0.0 -
0.8649 16500 0.0 -
0.8675 16550 0.0 -
0.8701 16600 0.0 -
0.8727 16650 0.0 -
0.8754 16700 0.0 -
0.8780 16750 0.0 -
0.8806 16800 0.0 -
0.8832 16850 0.0 -
0.8858 16900 0.0 -
0.8885 16950 0.0 -
0.8911 17000 0.0 -
0.8937 17050 0.0 -
0.8963 17100 0.0 -
0.8989 17150 0.0 -
0.9016 17200 0.0 -
0.9042 17250 0.0 -
0.9068 17300 0.0 -
0.9094 17350 0.0 -
0.9120 17400 0.0 -
0.9147 17450 0.0 -
0.9173 17500 0.0 -
0.9199 17550 0.0 -
0.9225 17600 0.0 -
0.9251 17650 0.0 -
0.9278 17700 0.0 -
0.9304 17750 0.0 -
0.9330 17800 0.0 -
0.9356 17850 0.0 -
0.9383 17900 0.0 -
0.9409 17950 0.0 -
0.9435 18000 0.0 -
0.9461 18050 0.0 -
0.9487 18100 0.0 -
0.9514 18150 0.0 -
0.9540 18200 0.0 -
0.9566 18250 0.0 -
0.9592 18300 0.0 -
0.9618 18350 0.0 -
0.9645 18400 0.0 -
0.9671 18450 0.0 -
0.9697 18500 0.0 -
0.9723 18550 0.0 -
0.9749 18600 0.0 -
0.9776 18650 0.0 -
0.9802 18700 0.0 -
0.9828 18750 0.0 -
0.9854 18800 0.0 -
0.9880 18850 0.0 -
0.9907 18900 0.0 -
0.9933 18950 0.0 -
0.9959 19000 0.0 -
0.9985 19050 0.0 -
1.0 19078 - 0.0437
1.0012 19100 0.0 -
1.0038 19150 0.0 -
1.0064 19200 0.0 -
1.0090 19250 0.0 -
1.0116 19300 0.0 -
1.0143 19350 0.0 -
1.0169 19400 0.0 -
1.0195 19450 0.3698 -
1.0221 19500 0.1546 -
1.0247 19550 0.0179 -
1.0274 19600 0.0004 -
1.0300 19650 0.0005 -
1.0326 19700 0.0 -
1.0352 19750 0.0002 -
1.0378 19800 0.0 -
1.0405 19850 0.0 -
1.0431 19900 0.0 -
1.0457 19950 0.0002 -
1.0483 20000 0.0011 -
1.0509 20050 0.0 -
1.0536 20100 0.0 -
1.0562 20150 0.0 -
1.0588 20200 0.0003 -
1.0614 20250 0.0 -
1.0641 20300 0.0003 -
1.0667 20350 0.0003 -
1.0693 20400 0.0 -
1.0719 20450 0.0 -
1.0745 20500 0.0 -
1.0772 20550 0.0 -
1.0798 20600 0.0 -
1.0824 20650 0.0 -
1.0850 20700 0.0 -
1.0876 20750 0.0 -
1.0903 20800 0.0 -
1.0929 20850 0.0 -
1.0955 20900 0.0 -
1.0981 20950 0.0 -
1.1007 21000 0.0 -
1.1034 21050 0.0 -
1.1060 21100 0.0 -
1.1086 21150 0.0 -
1.1112 21200 0.0 -
1.1138 21250 0.0 -
1.1165 21300 0.0 -
1.1191 21350 0.0 -
1.1217 21400 0.0 -
1.1243 21450 0.0 -
1.1270 21500 0.0 -
1.1296 21550 0.0 -
1.1322 21600 0.0 -
1.1348 21650 0.0 -
1.1374 21700 0.0 -
1.1401 21750 0.0 -
1.1427 21800 0.0 -
1.1453 21850 0.0 -
1.1479 21900 0.0 -
1.1505 21950 0.0 -
1.1532 22000 0.0 -
1.1558 22050 0.0 -
1.1584 22100 0.0 -
1.1610 22150 0.0 -
1.1636 22200 0.0 -
1.1663 22250 0.0 -
1.1689 22300 0.0 -
1.1715 22350 0.0 -
1.1741 22400 0.0 -
1.1767 22450 0.0 -
1.1794 22500 0.0 -
1.1820 22550 0.0 -
1.1846 22600 0.0 -
1.1872 22650 0.0 -
1.1899 22700 0.0 -
1.1925 22750 0.0 -
1.1951 22800 0.0 -
1.1977 22850 0.0 -
1.2003 22900 0.0 -
1.2030 22950 0.0 -
1.2056 23000 0.0 -
1.2082 23050 0.0 -
1.2108 23100 0.0 -
1.2134 23150 0.0 -
1.2161 23200 0.0 -
1.2187 23250 0.0 -
1.2213 23300 0.0 -
1.2239 23350 0.0 -
1.2265 23400 0.0 -
1.2292 23450 0.0 -
1.2318 23500 0.0 -
1.2344 23550 0.0 -
1.2370 23600 0.0 -
1.2396 23650 0.0 -
1.2423 23700 0.0 -
1.2449 23750 0.0 -
1.2475 23800 0.0 -
1.2501 23850 0.0 -
1.2528 23900 0.0 -
1.2554 23950 0.0 -
1.2580 24000 0.0 -
1.2606 24050 0.0 -
1.2632 24100 0.0 -
1.2659 24150 0.0 -
1.2685 24200 0.0 -
1.2711 24250 0.0 -
1.2737 24300 0.0 -
1.2763 24350 0.0 -
1.2790 24400 0.0 -
1.2816 24450 0.0 -
1.2842 24500 0.0 -
1.2868 24550 0.0 -
1.2894 24600 0.0 -
1.2921 24650 0.0 -
1.2947 24700 0.0 -
1.2973 24750 0.0 -
1.2999 24800 0.0 -
1.3025 24850 0.0 -
1.3052 24900 0.0 -
1.3078 24950 0.0 -
1.3104 25000 0.0 -
1.3130 25050 0.0 -
1.3157 25100 0.0 -
1.3183 25150 0.0 -
1.3209 25200 0.0 -
1.3235 25250 0.0 -
1.3261 25300 0.0 -
1.3288 25350 0.0 -
1.3314 25400 0.0 -
1.3340 25450 0.0 -
1.3366 25500 0.0 -
1.3392 25550 0.0 -
1.3419 25600 0.0 -
1.3445 25650 0.0 -
1.3471 25700 0.0 -
1.3497 25750 0.0 -
1.3523 25800 0.0 -
1.3550 25850 0.0 -
1.3576 25900 0.0 -
1.3602 25950 0.0 -
1.3628 26000 0.0 -
1.3654 26050 0.0 -
1.3681 26100 0.0 -
1.3707 26150 0.0 -
1.3733 26200 0.0 -
1.3759 26250 0.0 -
1.3786 26300 0.0 -
1.3812 26350 0.0 -
1.3838 26400 0.0 -
1.3864 26450 0.0 -
1.3890 26500 0.0 -
1.3917 26550 0.0 -
1.3943 26600 0.0 -
1.3969 26650 0.0 -
1.3995 26700 0.0 -
1.4021 26750 0.0 -
1.4048 26800 0.0 -
1.4074 26850 0.0 -
1.4100 26900 0.0 -
1.4126 26950 0.0 -
1.4152 27000 0.0 -
1.4179 27050 0.0 -
1.4205 27100 0.0 -
1.4231 27150 0.0 -
1.4257 27200 0.0 -
1.4283 27250 0.0 -
1.4310 27300 0.0 -
1.4336 27350 0.0 -
1.4362 27400 0.0 -
1.4388 27450 0.0 -
1.4415 27500 0.0 -
1.4441 27550 0.0 -
1.4467 27600 0.0 -
1.4493 27650 0.0 -
1.4519 27700 0.0 -
1.4546 27750 0.0 -
1.4572 27800 0.0 -
1.4598 27850 0.0 -
1.4624 27900 0.0 -
1.4650 27950 0.0 -
1.4677 28000 0.0 -
1.4703 28050 0.0 -
1.4729 28100 0.0 -
1.4755 28150 0.0 -
1.4781 28200 0.0 -
1.4808 28250 0.0 -
1.4834 28300 0.0 -
1.4860 28350 0.0 -
1.4886 28400 0.0 -
1.4912 28450 0.0 -
1.4939 28500 0.0 -
1.4965 28550 0.0 -
1.4991 28600 0.0 -
1.5017 28650 0.0 -
1.5044 28700 0.0 -
1.5070 28750 0.0 -
1.5096 28800 0.0 -
1.5122 28850 0.0 -
1.5148 28900 0.0 -
1.5175 28950 0.0 -
1.5201 29000 0.0 -
1.5227 29050 0.0 -
1.5253 29100 0.0 -
1.5279 29150 0.0 -
1.5306 29200 0.0 -
1.5332 29250 0.0 -
1.5358 29300 0.0 -
1.5384 29350 0.0 -
1.5410 29400 0.0 -
1.5437 29450 0.0 -
1.5463 29500 0.0 -
1.5489 29550 0.0 -
1.5515 29600 0.0 -
1.5541 29650 0.0 -
1.5568 29700 0.0 -
1.5594 29750 0.0 -
1.5620 29800 0.0 -
1.5646 29850 0.0 -
1.5673 29900 0.0 -
1.5699 29950 0.0 -
1.5725 30000 0.0 -
1.5751 30050 0.0 -
1.5777 30100 0.0 -
1.5804 30150 0.0 -
1.5830 30200 0.0 -
1.5856 30250 0.0 -
1.5882 30300 0.0 -
1.5908 30350 0.0 -
1.5935 30400 0.0 -
1.5961 30450 0.0 -
1.5987 30500 0.0 -
1.6013 30550 0.0 -
1.6039 30600 0.0 -
1.6066 30650 0.0 -
1.6092 30700 0.0 -
1.6118 30750 0.0 -
1.6144 30800 0.0 -
1.6170 30850 0.0 -
1.6197 30900 0.0 -
1.6223 30950 0.0 -
1.6249 31000 0.0 -
1.6275 31050 0.0 -
1.6301 31100 0.0 -
1.6328 31150 0.0 -
1.6354 31200 0.0 -
1.6380 31250 0.0 -
1.6406 31300 0.0 -
1.6433 31350 0.0 -
1.6459 31400 0.0 -
1.6485 31450 0.0 -
1.6511 31500 0.0 -
1.6537 31550 0.0 -
1.6564 31600 0.0 -
1.6590 31650 0.0 -
1.6616 31700 0.0 -
1.6642 31750 0.0 -
1.6668 31800 0.0 -
1.6695 31850 0.0 -
1.6721 31900 0.0 -
1.6747 31950 0.0 -
1.6773 32000 0.0 -
1.6799 32050 0.0 -
1.6826 32100 0.0 -
1.6852 32150 0.0 -
1.6878 32200 0.0 -
1.6904 32250 0.0 -
1.6930 32300 0.0 -
1.6957 32350 0.0 -
1.6983 32400 0.0 -
1.7009 32450 0.0 -
1.7035 32500 0.0 -
1.7062 32550 0.0 -
1.7088 32600 0.0 -
1.7114 32650 0.0 -
1.7140 32700 0.0 -
1.7166 32750 0.0 -
1.7193 32800 0.0 -
1.7219 32850 0.0 -
1.7245 32900 0.0 -
1.7271 32950 0.0 -
1.7297 33000 0.0 -
1.7324 33050 0.0 -
1.7350 33100 0.0 -
1.7376 33150 0.0 -
1.7402 33200 0.0 -
1.7428 33250 0.0 -
1.7455 33300 0.0 -
1.7481 33350 0.0 -
1.7507 33400 0.0 -
1.7533 33450 0.0 -
1.7559 33500 0.0 -
1.7586 33550 0.0 -
1.7612 33600 0.0 -
1.7638 33650 0.0 -
1.7664 33700 0.0 -
1.7691 33750 0.0 -
1.7717 33800 0.0 -
1.7743 33850 0.0 -
1.7769 33900 0.0 -
1.7795 33950 0.0 -
1.7822 34000 0.0 -
1.7848 34050 0.0 -
1.7874 34100 0.0 -
1.7900 34150 0.0 -
1.7926 34200 0.0 -
1.7953 34250 0.0 -
1.7979 34300 0.0 -
1.8005 34350 0.0 -
1.8031 34400 0.0 -
1.8057 34450 0.0 -
1.8084 34500 0.0 -
1.8110 34550 0.0 -
1.8136 34600 0.0 -
1.8162 34650 0.0 -
1.8188 34700 0.0 -
1.8215 34750 0.0 -
1.8241 34800 0.0 -
1.8267 34850 0.0 -
1.8293 34900 0.0 -
1.8320 34950 0.0 -
1.8346 35000 0.0 -
1.8372 35050 0.0 -
1.8398 35100 0.0 -
1.8424 35150 0.0 -
1.8451 35200 0.0 -
1.8477 35250 0.0 -
1.8503 35300 0.0 -
1.8529 35350 0.0 -
1.8555 35400 0.0 -
1.8582 35450 0.0 -
1.8608 35500 0.0 -
1.8634 35550 0.0 -
1.8660 35600 0.0 -
1.8686 35650 0.0 -
1.8713 35700 0.0 -
1.8739 35750 0.0 -
1.8765 35800 0.0 -
1.8791 35850 0.0 -
1.8817 35900 0.0 -
1.8844 35950 0.0 -
1.8870 36000 0.0 -
1.8896 36050 0.0 -
1.8922 36100 0.0 -
1.8949 36150 0.0 -
1.8975 36200 0.0 -
1.9001 36250 0.0 -
1.9027 36300 0.0 -
1.9053 36350 0.0 -
1.9080 36400 0.0 -
1.9106 36450 0.0 -
1.9132 36500 0.0 -
1.9158 36550 0.0 -
1.9184 36600 0.0 -
1.9211 36650 0.0 -
1.9237 36700 0.0 -
1.9263 36750 0.0 -
1.9289 36800 0.0 -
1.9315 36850 0.0 -
1.9342 36900 0.0 -
1.9368 36950 0.0 -
1.9394 37000 0.0 -
1.9420 37050 0.0 -
1.9446 37100 0.0 -
1.9473 37150 0.0 -
1.9499 37200 0.0 -
1.9525 37250 0.0 -
1.9551 37300 0.0 -
1.9578 37350 0.0 -
1.9604 37400 0.0 -
1.9630 37450 0.0 -
1.9656 37500 0.0 -
1.9682 37550 0.0 -
1.9709 37600 0.0 -
1.9735 37650 0.0 -
1.9761 37700 0.0 -
1.9787 37750 0.0 -
1.9813 37800 0.0 -
1.9840 37850 0.0 -
1.9866 37900 0.0 -
1.9892 37950 0.0 -
1.9918 38000 0.0 -
1.9944 38050 0.0 -
1.9971 38100 0.0 -
1.9997 38150 0.0 -
2.0 38156 - 0.0438
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.36.0
  • PyTorch: 2.0.0
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vipinbansal179/SetFit_sms_Analyzer1

Finetuned
(165)
this model

Evaluation results